Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

Loading...
Thumbnail Image

Authors

Tai, Ning
Pan, Yujian
Yuan, Naichang

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM) signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM), the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

Description

Citation

Radioengineering. 2015 vol. 24, č. 4, s. 1013-1024. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2015/15_04_1013_1024.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported License
Citace PRO