DS-YOLO: A SAR Ship Detection Model for Dense Small Targets

dc.contributor.authorShen, Y. F.
dc.contributor.authorGao, Q.
dc.coverage.issue3cs
dc.coverage.volume34cs
dc.date.accessioned2025-06-16T06:45:09Z
dc.date.available2025-06-16T06:45:09Z
dc.date.issued2025-09cs
dc.description.abstractDetecting dense small targets in Synthetic Aperture Radar (SAR) images has always been a challenge in ship target detection. To address this issue, this paper proposes a ship target detection model for SAR images, named DS-YOLO, which is based on the YOLO11 network architecture. The model introduces Space-to-Depth Convolution (SPDConv) module to enhance the detection capability of small targets. Additionally, a new module, Cross Stage Partial-Partial Pyramid Attention (CSP-PPA), is incorporated to improve the model's ability to extract features at multiple scales and suppress confusing backgrounds. The loss function is optimized using a bounding box loss based on Adaptive Weighted Normalized Wasserstein distance (AWNWD), enhancing the model's adaptability to images of varying quality. Finally, experiments were conducted on the standard datasets HRSID and SAR-Ships dataset to validate the robustness and reliability of the DS-YOLO model. The experimental results show that, compared to YOLO11n, DS-YOLO achieved an mAP0.5:0.95 of 68.6% on the SAR-Ships dataset and 69.9% on the HRSID, representing improvements of 1.6% and 0.8%, respectively. Additionally, on these small-target datasets, DS-YOLO achieved an mAP0.5:0.95 of 50.8% and 60.4%, representing improvements of 4.2% and 1.2%, respectively, demonstrating higher detection accuracy.en
dc.formattextcs
dc.format.extent407-421cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2025 vol. 34, č. 3, s. 407-421. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2025.0407en
dc.identifier.issn1210-2512
dc.identifier.urihttps://hdl.handle.net/11012/252532
dc.language.isoencs
dc.publisherRadioengineering Societycs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2025/25_03_0407_0421.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectDS-YOLOen
dc.subjectSAR imageen
dc.subjectship detectionen
dc.subjectSpace-to-Depth Convolution (SPDConv)en
dc.subjectCross Stage Partial-Partial Pyramid Attention (CSP-PPA)en
dc.subjectAdaptive Weighted Normalized Wasserstein Distance (AWNWD)en
dc.titleDS-YOLO: A SAR Ship Detection Model for Dense Small Targetsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25_03_0407_0421.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format

Collections