Boscovich fuzzy regression line
dc.contributor.author | Škrabánek, Pavel | cs |
dc.contributor.author | Marek, Jaroslav | cs |
dc.contributor.author | Pozdílková, Alena | cs |
dc.coverage.issue | 6 | cs |
dc.coverage.volume | 9 | cs |
dc.date.accessioned | 2021-07-23T14:55:20Z | |
dc.date.available | 2021-07-23T14:55:20Z | |
dc.date.issued | 2021-03-23 | cs |
dc.description.abstract | We introduce a new fuzzy linear regression method. The method is capable of approximating fuzzy relationships between an independent and a dependent variable. The independent and dependent variables are expected to be a real value and triangular fuzzy numbers, respec-tively. We demonstrate on twenty datasets that the method is reliable, and it is less sensitive to outliers, compare with possibilistic-based fuzzy regression methods. Unlike other commonly used fuzzy regression methods, the presented method is simple for implementation and it has linear time-complexity. The method guarantees non-negativity of model parameter spreads. | en |
dc.format | text | cs |
dc.format.extent | 1-14 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Mathematics. 2021, vol. 9, issue 6, p. 1-14. | en |
dc.identifier.doi | 10.3390/math9060685 | cs |
dc.identifier.issn | 2227-7390 | cs |
dc.identifier.other | 171143 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/200895 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Mathematics | cs |
dc.relation.uri | https://www.mdpi.com/2227-7390/9/6/685 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2227-7390/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | fuzzy linear regression | en |
dc.subject | non-symmetric triangular fuzzy number | en |
dc.subject | least absolute value | en |
dc.subject | Boscovich regression line | en |
dc.subject | outlier | en |
dc.title | Boscovich fuzzy regression line | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-171143 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2021.08.30 23:53:59 | en |
sync.item.modts | 2021.08.30 22:49:42 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav automatizace a informatiky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- mathematics0900685.pdf
- Size:
- 328.42 KB
- Format:
- Adobe Portable Document Format
- Description:
- mathematics0900685.pdf