Atrial Fibrillation Classification Using Deep Convolution Networks

but.event.date23.04.2020cs
but.event.titleStudent EEICT 2020cs
dc.contributor.authorNovotna, Petra
dc.date.accessioned2021-07-15T11:17:22Z
dc.date.available2021-07-15T11:17:22Z
dc.date.issued2020cs
dc.description.abstractWe propose the usage of three deep convolutional neural networks architectures for classification of a single lead electrocardiogram (ECG) recordings and evaluate them on the atrial fibrillation (AFIB) classification, for which data set was provided by the Department of Biomedical Engineering, BUT. The compared networks are based on ResNet, VGG net and AlexNet. Single lead signals are transformed into the form of spectrogram. AFIB data was augmented for the purpose of similar size of both respected classes and for successful classification. The most successful architecture, based on AlexNet, was found to perform obtaining an accuracy of 92 % and F1 score of 56 % on the hidden testing set.en
dc.formattextcs
dc.format.extent345-349cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 345-349. ISBN 978-80-214-5867-3cs
dc.identifier.isbn978-80-214-5867-3
dc.identifier.urihttp://hdl.handle.net/11012/200593
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 26st Conference STUDENT EEICT 2020: General papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/EEICT2020cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectECGen
dc.subjectatrial fibrillationen
dc.subjectsignal processing classificationen
dc.subjectdeep learningen
dc.subjectneural networksen
dc.subjectconvolutionen
dc.subjectresneten
dc.subjectalexneten
dc.subjectvggen
dc.titleAtrial Fibrillation Classification Using Deep Convolution Networksen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
345-eeict_1.pdf
Size:
964.53 KB
Format:
Adobe Portable Document Format
Description: