Atrial Fibrillation Classification Using Deep Convolution Networks
Loading...
Date
2020
Authors
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
We propose the usage of three deep convolutional neural networks architectures for classification of a single lead electrocardiogram (ECG) recordings and evaluate them on the atrial fibrillation (AFIB) classification, for which data set was provided by the Department of Biomedical Engineering, BUT. The compared networks are based on ResNet, VGG net and AlexNet. Single lead signals are transformed into the form of spectrogram. AFIB data was augmented for the purpose of similar size of both respected classes and for successful classification. The most successful architecture, based on AlexNet, was found to perform obtaining an accuracy of 92 % and F1 score of 56 % on the hidden testing set.
Description
Citation
Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers. s. 345-349. ISBN 978-80-214-5867-3
https://conf.feec.vutbr.cz/eeict/EEICT2020
https://conf.feec.vutbr.cz/eeict/EEICT2020
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií