Electrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Study

dc.contributor.authorManakhov, Antoncs
dc.contributor.authorSitnikova, Natalya A.cs
dc.contributor.authorTsygankova, Alphiya R.cs
dc.contributor.authorAlekseev, Alexander Yu.cs
dc.contributor.authorAdamenko, Lyubov S.cs
dc.contributor.authorPermyakova, Elizavetacs
dc.contributor.authorBaidyshev, Victor S.cs
dc.contributor.authorPopov, Zakharcs
dc.contributor.authorBlahová, Luciecs
dc.contributor.authorEliáš, Marekcs
dc.contributor.authorZajíčková, Lenkacs
dc.contributor.authorSolovieva, Anastasiyacs
dc.coverage.issue12cs
dc.coverage.volume11cs
dc.date.accessioned2022-03-21T15:56:11Z
dc.date.available2022-03-21T15:56:11Z
dc.date.issued2021-12-08cs
dc.description.abstractCopper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 mu g/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)(2). The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.en
dc.formattextcs
dc.format.extent1-19cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationMembranes. 2021, vol. 11, issue 12, p. 1-19.en
dc.identifier.doi10.3390/membranes11120965cs
dc.identifier.issn2077-0375cs
dc.identifier.other176818cs
dc.identifier.urihttp://hdl.handle.net/11012/204011
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofMembranescs
dc.relation.urihttps://www.mdpi.com/2077-0375/11/12/965cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2077-0375/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectPCL nanofibersen
dc.subjectXPSen
dc.subjectcopperen
dc.subjectantibacterial coatingen
dc.subjection releaseen
dc.subjectcytotoxicityen
dc.titleElectrospun Biodegradable Nanofibers Coated Homogenously by Cu Magnetron Sputtering Exhibit Fast Ion Release. Computational and Experimental Studyen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-176818en
sync.item.dbtypeVAVen
sync.item.insts2022.09.27 09:37:31en
sync.item.modts2022.09.26 11:05:47en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
membranes1100965.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
Description:
membranes1100965.pdf