Differential Evolution Based Nonlinear Model Predictive Speed Control of PMSM Implemented on GPU
| dc.contributor.author | Kozubík, Michal | cs |
| dc.contributor.author | Friml, Dominik | cs |
| dc.date.issued | 2021-06-20 | cs |
| dc.description.abstract | In this paper, the novel approach to the nonlinear model predictive speed control of a permanent magnet synchronous motor and its implementation is introduced. The implementation is performed using general-purpose computing on graphics processing unit. The introduced algorithm uses the optimization method based on the differential evolution to get the optimal increment of stator voltage. The proposed algorithm is tested in the processor in the loop simulation with the Simscape model for the simulation of PMSM and the Jetson Xavier embedded device for the algorithm execution. The results show the ability of the algorithm to ensure the reference tracking and to keep the requested variables within their limits. | en |
| dc.description.abstract | In this paper, the novel approach to the nonlinear model predictive speed control of a permanent magnet synchronous motor and its implementation is introduced. The implementation is performed using general-purpose computing on graphics processing unit. The introduced algorithm uses the optimization method based on the differential evolution to get the optimal increment of stator voltage. The proposed algorithm is tested in the processor in the loop simulation with the Simscape model for the simulation of PMSM and the Jetson Xavier embedded device for the algorithm execution. The results show the ability of the algorithm to ensure the reference tracking and to keep the requested variables within their limits. | en |
| dc.format | text | cs |
| dc.format.extent | 01-06 | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Proceedings of 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE) . 2021, p. 01-06. | en |
| dc.identifier.doi | 10.1109/ISIE45552.2021.9576359 | cs |
| dc.identifier.isbn | 978-1-7281-9023-5 | cs |
| dc.identifier.orcid | 0000-0002-6887-202X | cs |
| dc.identifier.orcid | 0000-0002-2013-6912 | cs |
| dc.identifier.other | 173029 | cs |
| dc.identifier.researcherid | CRJ-4028-2022 | cs |
| dc.identifier.scopus | 57328576200 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/202246 | |
| dc.language.iso | en | cs |
| dc.publisher | IEEE | cs |
| dc.relation.ispartof | Proceedings of 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE) | cs |
| dc.relation.uri | https://ieeexplore.ieee.org/document/9576359 | cs |
| dc.rights | (C) IEEE | cs |
| dc.rights.access | openAccess | cs |
| dc.subject | model predictive control | en |
| dc.subject | permanent magnet synchronous motor | en |
| dc.subject | differential evolution optimization | en |
| dc.subject | general-purpose computing | en |
| dc.subject | graphics processing unit | en |
| dc.subject | parallel computing | en |
| dc.subject | model predictive control | |
| dc.subject | permanent magnet synchronous motor | |
| dc.subject | differential evolution optimization | |
| dc.subject | general-purpose computing | |
| dc.subject | graphics processing unit | |
| dc.subject | parallel computing | |
| dc.title | Differential Evolution Based Nonlinear Model Predictive Speed Control of PMSM Implemented on GPU | en |
| dc.title.alternative | Differential Evolution Based Nonlinear Model Predictive Speed Control of PMSM Implemented on GPU | en |
| dc.type.driver | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | acceptedVersion | en |
| sync.item.dbid | VAV-173029 | en |
| sync.item.dbtype | VAV | en |
| sync.item.insts | 2025.10.14 14:08:38 | en |
| sync.item.modts | 2025.10.14 09:53:17 | en |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav automatizace a měřicí techniky | cs |
| thesis.grantor | Vysoké učení technické v Brně. Středoevropský technologický institut VUT. Kybernetika a robotika | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 9576359_accepted.pdf
- Size:
- 2.21 MB
- Format:
- Adobe Portable Document Format
- Description:
- 9576359_accepted.pdf
