2D Angularly Dependent Array Error Calibration for 1D Array via Neural Network with Local Manifold Interpolation

Loading...
Thumbnail Image

Authors

Pan, Yujian
Rajendran, Sreeraj
Pollin, Sofle

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

The calibration of the angularly dependent array error is a challenging task for signal processing. In this paper, we propose a neural network (NN)-based two-dimensional (2D) calibration method for a linear array. Firstly, the array steering vectors are measured on an azimuth grid at different elevations in an anechoic chamber, and the off-grid steering vectors are derived by the proposed local manifold interpolation (LMI) technique to reduce the risk of model overfitting. Then, the phase differences are extracted to form the features of the training data. At last, noise is added to the training data to enable the NN model to generalize well to the noisy data. The proposed method is evaluated by the indoor and outdoor measured data from a 77 GHz automotive radar and is compared with the conventional signal processing-based methods. The evaluation results show that a single NN model trained at the lowest signal-to-noise ratio (SNR) outperforms conventional methods by at least 55% on average over the entire SNR range and gives close performance to the perfect array without array error at low to medium SNR.

Description

Citation

Radioengineering. 2021 vol. 30, č. 3, s. 547-555. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2021/21_03_0547_0555.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO