A Simple Method for Quantification of Polyhydroxybutyrate and Polylactic Acid Micro-Bioplastics in Soils by Evolved Gas Analysis

Loading...
Thumbnail Image

Authors

Fojt, Jakub
Románeková, Ivana
Procházková, Petra
David, Jan
Brtnický, Martin
Kučerík, Jiří

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

Conventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked. This work presents a simple method for determining poly-3-hydroxybutyrate and polylactic acid micro-bioplastics in soil based on the thermogravimetry-mass spectrometry analysis of low molecular gases evolved during pyrolysis. For the method development, model soils containing different soil organic carbon contents were spiked with micro-bioplastics. Specific gaseous pyrolysis products of the analytes were identified, while the ratio of their amounts appeared to be constant above the level of detection of the suggested method. The constant ratio was explained as a lower soil influence on the evolution of the gaseous product, and it was suggested as an additional identification parameter. The advantages of the presented method are no sample pretreatment, presumably no need for an internal standard, low temperature needed for the transfer of gaseous products and the possibility of using its principles with other, cheaper detectors. The method can find application in the verification of biodegradation tests and in the monitoring of soils after the application of biodegradable products.
Conventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked. This work presents a simple method for determining poly-3-hydroxybutyrate and polylactic acid micro-bioplastics in soil based on the thermogravimetry-mass spectrometry analysis of low molecular gases evolved during pyrolysis. For the method development, model soils containing different soil organic carbon contents were spiked with micro-bioplastics. Specific gaseous pyrolysis products of the analytes were identified, while the ratio of their amounts appeared to be constant above the level of detection of the suggested method. The constant ratio was explained as a lower soil influence on the evolution of the gaseous product, and it was suggested as an additional identification parameter. The advantages of the presented method are no sample pretreatment, presumably no need for an internal standard, low temperature needed for the transfer of gaseous products and the possibility of using its principles with other, cheaper detectors. The method can find application in the verification of biodegradation tests and in the monitoring of soils after the application of biodegradable products.

Description

Citation

MOLECULES. 2022, vol. 27, issue 6, p. 1-16.
https://www.mdpi.com/1420-3049/27/6/1898

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO