A Compact Circular Loop Inspired Frequency and Bandwidth Reconfigurable Antenna for 4G, 5G, and X- Band Applications

Loading...
Thumbnail Image

Authors

Rasool, Maryam
Khan, Aabia
Bhatti, Farooq
Ijaz, Bilal
Iftikhar, Adnan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

This paper presents a printed patch antenna design to achieve frequency and bandwidth reconfigurability. Two RF PIN diodes are simultaneously operated to achieve the multi-reconfigurability operation. The patch is inspired from a circular loop design. The basic structure of loop is altered, and PIN diodes are integrated into the patch. The antenna operates in dual band configuration at 3.42 and 8.02 GHz in the diodes ‘OFF’ state, whereas the antenna switches to triple band operation at 2.21, 4.85, and 10.19 GHz in the diodes ‘ON’ state. Moreover, the antenna also exhibits an increased bandwidth from 7.54 to 12 GHz in the diodes ‘ON’ state, as compared to a narrow bandwidth from 7.71 to 8.48 GHz in the diodes ‘OFF’ state. The proposed antenna structure is implemented and fabricated using FR4 epoxy substrate of relative permittivity 4.4, and thickness 1.6 mm. Implemented design exhibits measured gains of 3.06 dBi, 2.81 dBi, and 2.92 dBi at 2.21, 4.85, and 10.19 GHz in the PIN diodes ‘ON’ state, respectively, while in the PIN diodes ‘OFF’ state, at 3.42 GHz the gain is 3.03 dBi and at 8.02 GHz the gain is 3.37 dBi. Overall, simulation results agree well with the measured results.

Description

Citation

Radioengineering. 2020 vol. 29, č. 3, s. 471-478. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2020/20_03_0471_0478.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO