Is It Possible to Distinguish COVID-19 Cases and Influenza with Wearable Devices? Analysis with Machine Learning

Loading...
Thumbnail Image

Authors

Skibińska, Justyna
Burget, Radim

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Engineering and Technology Publishing
Altmetrics

Abstract

The COVID-19 situation is enforcing the creation of the diagnosis and supporting methods for early detection, which could serve as screening tools. In this paper, we introduced the methodologies based on wearable devices and machine learning, which distinguishes between COVID-19 disease and two types of Influenza. We checked the results of binary classification for various scenarios and multiclass classification. The results were evaluated separately for the cases before the pandemic and in the middle of the pandemic. In the middle of the pandemic, the best classification accuracy was achieved when distinguishing between COVID-19 and Influenza cases with k-NN (the balanced accuracy was equal to 73%). The highest sensitivity was achieved for Logistic Regression - 61%. The successful distinction between Influenza types was achieved in 80 % for XGBoost and Decision Tree. Additionally, the balanced accuracy for multiclass classification was equal to 69 % for k-NN.
The COVID-19 situation is enforcing the creation of the diagnosis and supporting methods for early detection, which could serve as screening tools. In this paper, we introduced the methodologies based on wearable devices and machine learning, which distinguishes between COVID-19 disease and two types of Influenza. We checked the results of binary classification for various scenarios and multiclass classification. The results were evaluated separately for the cases before the pandemic and in the middle of the pandemic. In the middle of the pandemic, the best classification accuracy was achieved when distinguishing between COVID-19 and Influenza cases with k-NN (the balanced accuracy was equal to 73%). The highest sensitivity was achieved for Logistic Regression - 61%. The successful distinction between Influenza types was achieved in 80 % for XGBoost and Decision Tree. Additionally, the balanced accuracy for multiclass classification was equal to 69 % for k-NN.

Description

Citation

Journal of Advances in Information Technology. 2022, vol. 13, issue 3, p. 265-270.
http://www.jait.us/index.php?m=content&c=index&a=show&catid=217&id=1225

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO