Low-power ASIC suitable for miniaturized wireless EMG systems

Loading...
Thumbnail Image
Date
2019-11-26
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Slovenska Technika Univerzita
Altmetrics
Abstract
Nowadays, the technology advancements of signal processing, low-voltage low-power circuits and miniaturized circuits have enabled the design of compact, battery-powered, high performance solutions for a wide range of, particularly, biomedical applications. Novel sensors for human biomedical signals are creating new opportunities for low weight wearable devices which allow continuous monitoring together with freedom of movement of the users. This paper presents the design and implementation of a novel miniaturized low-power sensor in integrated circuit (IC) form suitable for wireless electromyogram (EMG) systems. Signal inputs (electrodes) are connected to this application-specific integrated circuit (ASIC). The ASIC consists of several consecutive parts. Signals from electrodes are fed to an instrumentation amplifier (INA) with fixed gain of 50 and filtered by two filters (a low-pass and high-pass filter), which remove useless signals and noise with frequencies below 20 Hz and above 500 Hz. Then signal is amplified by a variable gain amplifier. The INA together with the reconfigurable amplifier provide overall gain of 50, 200, 500 or 1250. The amplified signal is then converted to pulse density modulated (PDM) signal using a 12-bit delta-sigma modulator. The ASIC is fabricated in TSMC0.18 mixed-signal CMOS technology.
Description
Citation
Journal of Electrical Engineering. 2019, vol. 70, issue 5, p. 393-399.
https://content.sciendo.com/view/journals/jee/70/5/article-p393.xml
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO