Low-Temperature Atomic Layer Deposition Synthesis of Vanadium Sulfide (Ultra)Thin Films for Nanotubular Supercapacitors

dc.contributor.authorZazpe Mendioroz, Raúlcs
dc.contributor.authorSepúlveda Sepúlveda, Lina Marcelacs
dc.contributor.authorRodriguez Pereira, Jhonatancs
dc.contributor.authorHromádko, Luděkcs
dc.contributor.authorMichalička, Jancs
dc.contributor.authorKolíbalová, Evacs
dc.contributor.authorKurka, Michalcs
dc.contributor.authorThalluri, Sitaramanjaneya Moulics
dc.contributor.authorSopha, Hanna Ingridcs
dc.contributor.authorMacák, Jancs
dc.coverage.issue4cs
dc.coverage.volume5cs
dc.date.accessioned2025-06-18T09:57:52Z
dc.date.available2025-06-18T09:57:52Z
dc.date.issued2024-04-01cs
dc.description.abstractHerein, the synthesis of vanadium sulfide (VxSy) by atomic layer deposition (ALD) based on the use of tetrakis(dimethylamino) vanadium (IV) and hydrogen sulfide is presented for the first time. The (ultra)thin films VxSy are synthesized in a wide range of temperatures (100-225 degrees C) and extensively characterized by different methods. The chemical composition of the VxSy (ultra)thin films reveals different vanadium oxidation states and sulfur-based species. Extensive X-ray photoelectron spectroscopy analysis studies the effect of different ALD parameters on the VxSy chemical composition. Encouraged by the rich chemistry properties of vanadium-based compounds and based on the variable valences of vanadium, the electrochemical properties of ALD VxSy (ultra)thin films as electrode material for supercapacitors are further explored. Thereby, nanotubular composites are fabricated by coating TiO2 nanotube layers (TNTs) with different numbers of VxSy ALD cycles at low temperature (100 degrees C). Long-term cycling tests reveal a gradual decline of electrochemical performance due to the progressive VxSy thin films dissolution under the experimental conditions. Nevertheless, VxSy-coated TNTs exhibit significantly superior capacitance properties as compared to the blank counterparts. The enhanced capacitance properties exhibited are derived from the presence of chemically stable and electrochemically active S-based species on the TNTs surface.en
dc.formattextcs
dc.format.extent10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSmall Structures. 2024, vol. 5, issue 4, 10 p.en
dc.identifier.doi10.1002/sstr.202300512cs
dc.identifier.issn2688-4062cs
dc.identifier.orcid0000-0001-6231-0061cs
dc.identifier.orcid0000-0002-8548-8185cs
dc.identifier.orcid0000-0001-7091-3022cs
dc.identifier.other188934cs
dc.identifier.scopus34872408700cs
dc.identifier.scopus55655855500cs
dc.identifier.urihttps://hdl.handle.net/11012/253581
dc.language.isoencs
dc.publisherWILEYcs
dc.relation.ispartofSmall Structurescs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/sstr.202300512cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2688-4062/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subject(ultra)thin filmsen
dc.subjectatomic layer depositionen
dc.subjectnanotubular structuresen
dc.subjectsupercapacitorsen
dc.subjectvanadium sulfideen
dc.titleLow-Temperature Atomic Layer Deposition Synthesis of Vanadium Sulfide (Ultra)Thin Films for Nanotubular Supercapacitorsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.grantNumberinfo:eu-repo/grantAgreement/MSM/LM/LM2023051cs
sync.item.dbidVAV-188934en
sync.item.dbtypeVAVen
sync.item.insts2025.06.18 11:57:52en
sync.item.modts2025.06.18 11:33:08en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Sdílená laboratoř RP1cs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SmallStructures2024Zazpe.pdf
Size:
4.89 MB
Format:
Adobe Portable Document Format
Description:
file SmallStructures2024Zazpe.pdf