Collision Avoidance For Ateros Robotic System

but.event.date25.04.2019cs
but.event.titleStudent EEICT 2019cs
dc.contributor.authorLigocki, Adam
dc.date.accessioned2020-04-16T07:19:38Z
dc.date.available2020-04-16T07:19:38Z
dc.date.issued2019cs
dc.description.abstractThis paper describes the details of a collision avoidance algorithm for an ATEROS robotic system. The solution, developed and tested on the Orpheus robotic platform is based on a Velodyne HDL-32E laser scanner. The LiDAR point cloud input data are filtered to remove data redundancy and clustered to separate possible collision objects from the background. Based on prior environment knowledge and the current LiDAR scan, the surrounding occupancy grid map is estimated, and the planned path is validated against possible collision. In the case of a non-zero probability that the robot collides with an obstacle, a new path is proposed by the A* algorithm. Subsequently, the newly estimated waypoints are relaxed, and the mission plan is updated.en
dc.formattextcs
dc.format.extent576-580cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings of the 25st Conference STUDENT EEICT 2019. s. 576-580. ISBN 978-80-214-5735-5cs
dc.identifier.isbn978-80-214-5735-5
dc.identifier.urihttp://hdl.handle.net/11012/186738
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings of the 25st Conference STUDENT EEICT 2019en
dc.relation.urihttp://www.feec.vutbr.cz/EEICT/cs
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectData Acquisitionen
dc.subjectCameraen
dc.subjectLiDARen
dc.subjectIMUen
dc.subjectGNSSen
dc.subjectOdometryen
dc.subjectData Fusionen
dc.titleCollision Avoidance For Ateros Robotic Systemen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
576_eeict2019.pdf
Size:
657.08 KB
Format:
Adobe Portable Document Format
Description: