Collision Avoidance For Ateros Robotic System

Loading...
Thumbnail Image

Date

Authors

Ligocki, Adam

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

ORCID

Abstract

This paper describes the details of a collision avoidance algorithm for an ATEROS robotic system. The solution, developed and tested on the Orpheus robotic platform is based on a Velodyne HDL-32E laser scanner. The LiDAR point cloud input data are filtered to remove data redundancy and clustered to separate possible collision objects from the background. Based on prior environment knowledge and the current LiDAR scan, the surrounding occupancy grid map is estimated, and the planned path is validated against possible collision. In the case of a non-zero probability that the robot collides with an obstacle, a new path is proposed by the A* algorithm. Subsequently, the newly estimated waypoints are relaxed, and the mission plan is updated.

Description

Citation

Proceedings of the 25st Conference STUDENT EEICT 2019. s. 576-580. ISBN 978-80-214-5735-5
http://www.feec.vutbr.cz/EEICT/

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

DOI

Endorsement

Review

Supplemented By

Referenced By

Citace PRO