Traffic Similarity Observation Using a Genetic Algorithm and Clustering
dc.contributor.author | Oujezský, Václav | cs |
dc.contributor.author | Horváth, Tomáš | cs |
dc.coverage.issue | 4 | cs |
dc.coverage.volume | 6 | cs |
dc.date.issued | 2018-11-11 | cs |
dc.description.abstract | This article presents a technique of traffic similarity observation based on the statistical method of survival analysis by using a genetic algorithm. The basis comes from the k-means clustering algorithm. The observed traffic is collected from different network sources by using a NetFlow collector. The purpose of this technique is to propose a process of finding spread malicious traffic, e.g., ransomware, and considers the possibility of implementing a genetic-based algorithm. In our solution, a chromosome is created from clustering k-means centers, and the Davies–Bouldin validity index is used as the second fitness value in the solution. | en |
dc.format | text | cs |
dc.format.extent | 1-10 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | Technologies - MDPI. 2018, vol. 6, issue 4, p. 1-10. | en |
dc.identifier.doi | 10.3390/technologies6040103 | cs |
dc.identifier.issn | 2227-7080 | cs |
dc.identifier.orcid | 0000-0001-7629-6299 | cs |
dc.identifier.orcid | 0000-0001-8659-8645 | cs |
dc.identifier.other | 138952 | cs |
dc.identifier.researcherid | Q-9784-2017 | cs |
dc.identifier.scopus | 57160133400 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/137212 | |
dc.language.iso | en | cs |
dc.publisher | MDPI | cs |
dc.relation.ispartof | Technologies - MDPI | cs |
dc.relation.uri | https://www.mdpi.com/2227-7080/6/4/103 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/2227-7080/ | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Clustering algorithms | en |
dc.subject | Evolutionary computation | en |
dc.subject | IP networks | en |
dc.subject | Information security | en |
dc.subject | Programming. | en |
dc.title | Traffic Similarity Observation Using a Genetic Algorithm and Clustering | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-138952 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:41:59 | en |
sync.item.modts | 2025.01.17 15:19:36 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- technologies0600103.pdf
- Size:
- 1.91 MB
- Format:
- Adobe Portable Document Format
- Description:
- technologies0600103.pdf