Fracture parameters of fly ash geopolymer mortars with carbon black and graphite filler

Loading...
Thumbnail Image

Authors

Šimonová, Hana
Mizerová, Cecílie
Rovnaník, Pavel
Lipowczan, Martin
Schmid, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

In this study, the effect of carbon black and graphite filler on the crack initiation and fracture parameters of fly ash geopolymer mortar is investigated. The carbon black was added in the amount of 0.5 and 1.0% and graphite powder in the amount of 5 and 10% relative to the fly ash mass. The reference mixture without any filler was also prepared. The fracture characteristics were determined based on the results of the three-point bending test of prismatic specimens provided with an initial central edge notch. The fracture experiments were conducted at the age of 48 days. The vertical force (F), the displacement measured in the middle of the span length (d), and the crack mouth opening displacement (CMOD) were continuously recorded during the test. The records of fracture tests were subsequently evaluated using the effective crack model, work-of-fracture method, and double-K fracture model. The addition of both fine fillers led to a decrease in monitored mechanical fracture parameters in comparison with reference mortar.
In this study, the effect of carbon black and graphite filler on the crack initiation and fracture parameters of fly ash geopolymer mortar is investigated. The carbon black was added in the amount of 0.5 and 1.0% and graphite powder in the amount of 5 and 10% relative to the fly ash mass. The reference mixture without any filler was also prepared. The fracture characteristics were determined based on the results of the three-point bending test of prismatic specimens provided with an initial central edge notch. The fracture experiments were conducted at the age of 48 days. The vertical force (F), the displacement measured in the middle of the span length (d), and the crack mouth opening displacement (CMOD) were continuously recorded during the test. The records of fracture tests were subsequently evaluated using the effective crack model, work-of-fracture method, and double-K fracture model. The addition of both fine fillers led to a decrease in monitored mechanical fracture parameters in comparison with reference mortar.

Description

Citation

IOP Conference Series: Materials Science and Engineering. 2021, vol. 1205, p. 1-8.
https://iopscience.iop.org/article/10.1088/1757-899X/1205/1/012019

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO