Uncertainty analysis of hydrostatic bearing working conditions with experimental, CFD, and analytical approach

dc.contributor.authorFoltýn, Jancs
dc.contributor.authorMaccioni, Lorenzocs
dc.contributor.authorMichalec, Michalcs
dc.contributor.authorConcli, Francocs
dc.contributor.authorSvoboda, Petrcs
dc.coverage.issue5cs
dc.coverage.volume89cs
dc.date.accessioned2025-05-26T10:56:57Z
dc.date.available2025-05-26T10:56:57Z
dc.date.issued2025-05-02cs
dc.description.abstractThe design and real-time control of hydrostatic bearings (HS) require precise models capable of accurately predicting bearing behaviour under diverse operational conditions. Traditional analytical models have been found to be inadequate to simultaneously estimating critical parameters, including carrying capacity, recess pressure, film thickness, and flow rate. To overcome these limitations, Computational Fluid Dynamics (CFD) has emerged as a powerful tool in recent years. However, the accuracy of operational data used to calibrate the numerical and analytical models significantly influences the propagation of uncertainty. This study focusses on an experimental campaign and the development of a CFD model within the OpenFOAM® environment. Numerical and analytical models were calibrated using various input parameters, such as flow rate and recess pressure, to replicate experimental conditions while accounting for extreme operational scenarios and the inherent uncertainties in the experimental data. The results indicate that although average CFD predictions exhibit consistent errors in estimating operational parameters, the uncertainty ranges of the experimental and numerical data overlap under the conditions examined. On the contrary, analytical predictions show notable discrepancies, even when measurement uncertainties are considered. In particular, recess pressure emerged as the most effective input parameter to accurately estimating carrying capacity. These findings highlight the critical importance of incorporating measurement uncertainties into the calibration of numerical and analytical models for HS bearings, offering valuable information for their precise design and effective real-time control. Moreover, this paper demonstrates how CFD enables the consideration of misalignments measured during experimentation, a factor that is not accounted for in current analytical models.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationForsch Ingenieurwes. 2025, vol. 89, issue 5, p. 1-10.en
dc.identifier.doi10.1007/s10010-025-00836-9cs
dc.identifier.issn1434-0860cs
dc.identifier.orcid0000-0001-6715-642Xcs
dc.identifier.orcid0000-0002-8803-9043cs
dc.identifier.orcid0000-0003-3091-4025cs
dc.identifier.other197839cs
dc.identifier.researcheridABM-0959-2022cs
dc.identifier.researcheridAAM-3692-2020cs
dc.identifier.researcheridF-5534-2012cs
dc.identifier.scopus57277460500cs
dc.identifier.scopus57205496270cs
dc.identifier.scopus57188955459cs
dc.identifier.urihttps://hdl.handle.net/11012/251023
dc.language.isoencs
dc.publisherSPRINGER HEIDELBERGcs
dc.relation.ispartofForsch Ingenieurwescs
dc.relation.urihttps://link.springer.com/article/10.1007/s10010-025-00836-9cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1434-0860/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectHydrostatic lubricationen
dc.subjectThin lubricant layer simulationen
dc.subjectCFD simulationen
dc.subjectOpenFOAMen
dc.titleUncertainty analysis of hydrostatic bearing working conditions with experimental, CFD, and analytical approachen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197839en
sync.item.dbtypeVAVen
sync.item.insts2025.05.26 12:56:57en
sync.item.modts2025.05.26 12:33:37en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav konstruovánícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. ÚK-odbor tribologiecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10010025008369.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
file s10010025008369.pdf