3D-printed nanocarbon sensors for the detection of chlorophenols and nitrophenols: Towards environmental applications of additive manufacturing

Loading...
Thumbnail Image

Authors

Jyoti, Jyoti
Redondo Negrete, Edurne
Alduhaish, Osamah
Pumera, Martin

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

3D printing is a manufacturing technique used to prototype devices with customized shapes composed of different materials, including carbon composites. Toxic phenolic compounds are a major environmental hazard. Herein, we demonstrate the use of carbon-based 3D-printed electrodes for the detection of chlorophenols and nitrophenols. The influence of pH on the voltammetric response was studied, and an alkaline pH was identified as the best environment for the detection of substituted phenols. Simultaneous detection of phenolic compounds was performed using differential pulse voltammetry. This approach appears promising for the fabrication of electrochemical sensors.
3D printing is a manufacturing technique used to prototype devices with customized shapes composed of different materials, including carbon composites. Toxic phenolic compounds are a major environmental hazard. Herein, we demonstrate the use of carbon-based 3D-printed electrodes for the detection of chlorophenols and nitrophenols. The influence of pH on the voltammetric response was studied, and an alkaline pH was identified as the best environment for the detection of substituted phenols. Simultaneous detection of phenolic compounds was performed using differential pulse voltammetry. This approach appears promising for the fabrication of electrochemical sensors.

Description

Citation

Electrochemistry Communications. 2021, vol. 125, issue 1, p. 1-6.
https://www.sciencedirect.com/science/article/pii/S1388248121000680?via%3Dihub#!

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO