Microstructure of Selective Laser Melted Titanium Lattices and In Vitro Cell Behaviour

dc.contributor.authorHernandez Tapia, Laura Guadalupecs
dc.contributor.authorCarranza-Trejo, Azalia Marielcs
dc.contributor.authorKashimbetova, Adeliacs
dc.contributor.authorTkachenko, Serhiics
dc.contributor.authorKoledová, Zuzanacs
dc.contributor.authorKoutný, Danielcs
dc.contributor.authorMalý, Martincs
dc.contributor.authorČelko, Ladislavcs
dc.contributor.authorMontufar Jimenez, Edgar Benjamincs
dc.date.accessioned2021-12-15T15:55:17Z
dc.date.available2021-12-15T15:55:17Z
dc.date.issued2021-09-15cs
dc.description.abstractSelective laser melting (SLM) is a metal additive manufacturing technology that allows the fabrication of complex near-net-shape titanium parts. Among possible applications, titanium is important for the biomedical sector, in particular for orthopaedics due to its low elastic modulus, biocompatibility, high mechanical strength and corrosion resistance. Several studies show the structural properties and mechanical behaviour of titanium lattices that in parallel exhibited the porosity, mechanical strength and elastic modulus of trabecular bone. However, less attention has been devoted to study the biological response to titanium parts fabricated by SLM. Therefore, this work aimed to fabricate commercially pure titanium lattices by SLM and study the behaviour of bone-forming cells cultured on the lattices. The results show that Saos-2 osteoblast-like cells proliferated and covered the entire available surface of the titanium lattices becoming confluent and quiescent. The activity of alkaline phosphatase and the production of extracellular calcium deposits confirmed the growth of viable and mature osteoblasts. The cytocompatibility of the titanium lattices is an additional advantage that adds to the possibility to mimic the porosity and mechanical properties of bone by computer-aided design and subsequently implement the lattice fabrication by SLM, fitting the requirements of individual patients and, consequently, offering a broad range of new bone repair alternatives in orthopaedics. Keywords: selective laser melting, titanium, microstructure, osteoblast, cytocompatibility.en
dc.formattextcs
dc.format.extent1179-1185cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationProceedings 30th Anniversary International Conference on Metallurgy and Materials. 2021, p. 1179-1185.en
dc.identifier.doi10.37904/metal.2021.4259cs
dc.identifier.isbn978-80-87294-99-4cs
dc.identifier.other175130cs
dc.identifier.urihttp://hdl.handle.net/11012/203228
dc.language.isoencs
dc.publisherTangercs
dc.relation.ispartofProceedings 30th Anniversary International Conference on Metallurgy and Materialscs
dc.relation.urihttps://www.confer.cz/metal/2021/4259-microstructure-of-selective-laser-melted-titanium-lattices-and-in-vitro-cell-behaviourcs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectselective laser meltingen
dc.subjecttitaniumen
dc.subjectmicrostructureen
dc.subjectosteoblasten
dc.subjectcytocompatibilityen
dc.titleMicrostructure of Selective Laser Melted Titanium Lattices and In Vitro Cell Behaviouren
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-175130en
sync.item.dbtypeVAVen
sync.item.insts2023.02.20 12:50:56en
sync.item.modts2023.02.20 12:12:42en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé povlakycs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. NCK MESTEC - sekce konstruovánícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. ÚK-odbor reverzního inženýrství a aditivních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
metal2021_hernandeztapia_metal.pdf
Size:
644.71 KB
Format:
Adobe Portable Document Format
Description:
metal2021_hernandeztapia_metal.pdf