Spectroscopic methods in the analysis of wear particles

Loading...
Thumbnail Image

Authors

Švábenská, Eva
Roupcová, Pavla
Schneeweiss, Oldřich

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

SPRINGER INT PUBL AG
Altmetrics

Abstract

Detailed characteristics wear particles formed in various brake pads were done. Our study was focused on identification structure and chemical composition of powder particles released by brake abrasion. The experimental studies were carried out using Mossbauer spectroscopy, X-ray powder diffraction, scanning electron microscopy and magnetic measurements. Structure and chemical composition of the original brake pads and disc samples were compared with the results obtained for wear particles. The chemical and phase composition of wear particles is in large part similar to composition of the original brake pads. Wear particles contained mainly various types of iron oxides, iron and iron carbon metallic particles. The part of the wear particles showed paramagnetic behaviour at room temperature. The sample with fully paramagnetic wear particles behaviour was subjected low temperature Mossbauer and magnetic measurements. The results indicate transition interval corresponding to magnetically ordered states-ferro/antiferromagnetic.
Detailed characteristics wear particles formed in various brake pads were done. Our study was focused on identification structure and chemical composition of powder particles released by brake abrasion. The experimental studies were carried out using Mossbauer spectroscopy, X-ray powder diffraction, scanning electron microscopy and magnetic measurements. Structure and chemical composition of the original brake pads and disc samples were compared with the results obtained for wear particles. The chemical and phase composition of wear particles is in large part similar to composition of the original brake pads. Wear particles contained mainly various types of iron oxides, iron and iron carbon metallic particles. The part of the wear particles showed paramagnetic behaviour at room temperature. The sample with fully paramagnetic wear particles behaviour was subjected low temperature Mossbauer and magnetic measurements. The results indicate transition interval corresponding to magnetically ordered states-ferro/antiferromagnetic.

Description

Citation

CHEMICAL PAPERS. 2023, vol. 77, issue 12, p. 7319-7329.
https://link.springer.com/article/10.1007/s11696-023-03007-8

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO