Modelling Initial Geometric Imperfections of Steel Plane Frames using Entropy and Eigenmodes
Loading...
Date
Authors
Kala, Zdeněk
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
North Atlantic University Union (NAUN)
ORCID
Altmetrics
Abstract
The article introduces an innovative approach to modelling initial geometric imperfections in steel plane frames. Initial imperfections are introduced using the analysis of normalised deformations of elastic buckling modes. The scale of these modes is assessed by applying Shannon entropy and potential energy analysis. The presented case study demonstrates a decreasing scale of the elastic buckling modes. The entropy computed from the deformation reveals a new perspective on buckling modes and provides a more profound understanding of steel frame behaviour. The case study results indicate that anti-symmetric buckling modes exhibit higher entropy than symmetric buckling modes. This entropy-based analysis enables the differentiation between symmetric and anti-symmetric buckling modes, which is particularly valuable when the critical buckling loads of sway and non-sway buckling modes are closely aligned or overlap.
The article introduces an innovative approach to modelling initial geometric imperfections in steel plane frames. Initial imperfections are introduced using the analysis of normalised deformations of elastic buckling modes. The scale of these modes is assessed by applying Shannon entropy and potential energy analysis. The presented case study demonstrates a decreasing scale of the elastic buckling modes. The entropy computed from the deformation reveals a new perspective on buckling modes and provides a more profound understanding of steel frame behaviour. The case study results indicate that anti-symmetric buckling modes exhibit higher entropy than symmetric buckling modes. This entropy-based analysis enables the differentiation between symmetric and anti-symmetric buckling modes, which is particularly valuable when the critical buckling loads of sway and non-sway buckling modes are closely aligned or overlap.
The article introduces an innovative approach to modelling initial geometric imperfections in steel plane frames. Initial imperfections are introduced using the analysis of normalised deformations of elastic buckling modes. The scale of these modes is assessed by applying Shannon entropy and potential energy analysis. The presented case study demonstrates a decreasing scale of the elastic buckling modes. The entropy computed from the deformation reveals a new perspective on buckling modes and provides a more profound understanding of steel frame behaviour. The case study results indicate that anti-symmetric buckling modes exhibit higher entropy than symmetric buckling modes. This entropy-based analysis enables the differentiation between symmetric and anti-symmetric buckling modes, which is particularly valuable when the critical buckling loads of sway and non-sway buckling modes are closely aligned or overlap.
Description
Keywords
Buckling , entropy , eigenmode , frame , structure , elastic stability , imperfections , Buckling , entropy , eigenmode , frame , structure , elastic stability , imperfections
Citation
International Journal of Mechanics. 2023, vol. 17, issue 1, p. 64-73.
https://npublications.com/journals/mechanics/2023/a202003-010(2023).pdf
https://npublications.com/journals/mechanics/2023/a202003-010(2023).pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International

0000-0002-6873-3855 