Transparent LiOH-doped magnesium aluminate spinel produced by spark plasma sintering: Effects of heating rate and dopant concentration

Loading...
Thumbnail Image

Authors

Pouchlý, Václav
Talimian, Ali
Kaštyl, Jaroslav
Chvíla, Martin
Ščasnovič, Erik
Beltran, Ana Maria
Lozano , Juan Gabriel
Galusek, Dušan

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Altmetrics

Abstract

The effects of LiOH doping of magnesium aluminate spinel powders and various Spark Plasma Sintering (SPS) schedules on densification behavior and final transparency of polycrystalline magnesium aluminate spinel were studied. Two commercial magnesium aluminate spinel powders, with different specific surface areas, were doped with up to 0.6 wt% of LiOH and consolidated using SPS with slow (2.75 degrees C/min) and fast (100 degrees C/min) heating rates. The slow heating rate was optimal for undoped magnesium aluminate spinel (LiOH-free) with the best real in-line transmittance (RIT) of 84.8% (measured at 633 nm on a disc 0.8 mm thick). For the magnesium aluminate spinel doped with 0.3 wt% of LiOH, the fast heating rate was beneficial, and an RIT of 76.5% was achieved. mu-Raman analysis confirmed that the addition of LiOH suppressed carbon contamination.
The effects of LiOH doping of magnesium aluminate spinel powders and various Spark Plasma Sintering (SPS) schedules on densification behavior and final transparency of polycrystalline magnesium aluminate spinel were studied. Two commercial magnesium aluminate spinel powders, with different specific surface areas, were doped with up to 0.6 wt% of LiOH and consolidated using SPS with slow (2.75 degrees C/min) and fast (100 degrees C/min) heating rates. The slow heating rate was optimal for undoped magnesium aluminate spinel (LiOH-free) with the best real in-line transmittance (RIT) of 84.8% (measured at 633 nm on a disc 0.8 mm thick). For the magnesium aluminate spinel doped with 0.3 wt% of LiOH, the fast heating rate was beneficial, and an RIT of 76.5% was achieved. mu-Raman analysis confirmed that the addition of LiOH suppressed carbon contamination.

Description

Citation

Journal of the European Ceramic Society. 2023, vol. 43, issue 8, p. 3544-3552.
https://www.sciencedirect.com/science/article/pii/S0955221923000729

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Citace PRO