Vliv přesnosti aritmetických operací na přesnost numerických metod
but.committee | doc. Ing. František Zbořil, CSc. (předseda) doc. Ing. Vladimír Drábek, CSc. (místopředseda) Ing. Vladimír Bartík, Ph.D. (člen) Ing. Martin Hrubý, Ph.D. (člen) doc. Ing. Vladimír Janoušek, Ph.D. (člen) doc. Ing. Stanislav Racek, CSc. (člen) | cs |
but.defence | Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se pak seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky oponenta a na další otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm velmi dobře (B) Otázky u obhajoby: Na str. 16 píšete "Ani tato kapitola si neklade za ciel kompletnost ani formalnou korektnost...". Uveďte přesto na pravou míru značení derivace v rovnici (4.1) - používáte f(y(t)), dále v textu f(y,t). Které značení je správné? Co znamenají "vlnovky" v rovnicích (4.1), (4.2)? Zajímavé je Vaše odvození "vztahu mezi optimálními body" kap. 7.6. Je vzorec (7.8) odvozen správně? Jak dlouho trvá doba překladu Vašeho programu? Zdůvodněte časté použití "template class", které ovlivňuje dobu překladu. | cs |
but.jazyk | čeština (Czech) | |
but.program | Informační technologie | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Peringer, Petr | cs |
dc.contributor.author | Kluknavský, František | cs |
dc.contributor.referee | Šátek, Václav | cs |
dc.date.created | 2012 | cs |
dc.description.abstract | Práce je zaměřená na hodnocení vlivu zaokrouhlovacích chyb na přesnost a efektivitu numerických integračních metod. Obsahuje teoretické předpoklady získané z existující literatury, implementaci knihovny zvolených metod, experimenty pro zjištění dosažené přesnosti za různých podmínek a jejich porovnání vzhledem k časové náročnosti. Knihovna implementuje metody Runge-Kutta prvního až sedmého řádu, dále metody Adams-Bashforth do 20 řádu naprogramováné pomocí C++ šablon, které dovolují použít volitelnou aritmetiku s vícenásobnou přesností. Experimenty byli provedeny za použití jednoduchých modelů se známým analytickým řešením. | cs |
dc.description.abstract | Thesis is dedicated to evaluation of roundoff impact on numerical integration methods accuracy and effectivity. Contains theoretical expectations taken from existing literature, implementation of chosen methods, experimental measurement of attained accuracy under different circumstances and their comparison with regard to time complexity. Library contains Runge-Kutta methods to order 7 and Adams-Bashforth methods to order 20 implemented using C++ templates which allow optional arbitrary-precision arithmetic. Small models with known analytic solution were used for experiments. | en |
dc.description.mark | B | cs |
dc.identifier.citation | KLUKNAVSKÝ, F. Vliv přesnosti aritmetických operací na přesnost numerických metod [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2012. | cs |
dc.identifier.other | 79014 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/53608 | |
dc.language.iso | cs | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta informačních technologií | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | obyčejné diferenciální rovnice | cs |
dc.subject | ODE | cs |
dc.subject | spojitá simulace | cs |
dc.subject | přesnost simulace | cs |
dc.subject | efektivita simulace | cs |
dc.subject | aritmetika s vícenásobnou přesností | cs |
dc.subject | Runge-Kutta | cs |
dc.subject | Adams-Bashforth | cs |
dc.subject | ordinary differential equations | en |
dc.subject | ODE | en |
dc.subject | continuous simulation | en |
dc.subject | simulation accuracy | en |
dc.subject | simulation effectivity | en |
dc.subject | arbitrary precision arithmetic | en |
dc.subject | Runge-Kutta | en |
dc.subject | Adams-Bashforth | en |
dc.title | Vliv přesnosti aritmetických operací na přesnost numerických metod | cs |
dc.title.alternative | Numerical Methods Accuracy vs Precision of Arithmetic | en |
dc.type | Text | cs |
dc.type.driver | masterThesis | en |
dc.type.evskp | diplomová práce | cs |
dcterms.dateAccepted | 2012-06-15 | cs |
dcterms.modified | 2020-05-09-23:43:22 | cs |
eprints.affiliatedInstitution.faculty | Fakulta informačních technologií | cs |
sync.item.dbid | 79014 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.26 15:11:38 | en |
sync.item.modts | 2025.01.15 13:50:04 | en |
thesis.discipline | Inteligentní systémy | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta informačních technologií. Ústav inteligentních systémů | cs |
thesis.level | Inženýrský | cs |
thesis.name | Ing. | cs |