Impedance spectroscopy – comparison of dielectric model with experimental results

Loading...
Thumbnail Image

Authors

Kusák, Ivo
Luňák, Miroslav
Mizerová, Cecílie
Rovnaník, Pavel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Altmetrics

Abstract

Impedance measurements of building materials have been gaining popularity especially in the last twenty years. No electrical component has only resistance, capacitance or inductance, as there is an interplay of these parameters. This is compounded in the case of building materials, which contain a significant number of different phases that vary in chemical composition, crystalline structure and properties. It is, therefore, necessary to choose a connection and measurement system that provides the most accurate information about the building material. This information is primarily meant to include the complex impedance, its components and the quantities derived from them. The derived quantities are electrical resistance or electrical capacitance. Using these quantities we can point out the composition of the material, its conductivity and identify the percolation threshold or describe its sensory properties in more detail. For measurements, an alternating electric field is crucial, and the range of frequencies depends on the instruments used. For materials characterization, the most used frequency range is 100 Hz to 100 kHz; however, we can measure down to 1 MHz.
Impedance measurements of building materials have been gaining popularity especially in the last twenty years. No electrical component has only resistance, capacitance or inductance, as there is an interplay of these parameters. This is compounded in the case of building materials, which contain a significant number of different phases that vary in chemical composition, crystalline structure and properties. It is, therefore, necessary to choose a connection and measurement system that provides the most accurate information about the building material. This information is primarily meant to include the complex impedance, its components and the quantities derived from them. The derived quantities are electrical resistance or electrical capacitance. Using these quantities we can point out the composition of the material, its conductivity and identify the percolation threshold or describe its sensory properties in more detail. For measurements, an alternating electric field is crucial, and the range of frequencies depends on the instruments used. For materials characterization, the most used frequency range is 100 Hz to 100 kHz; however, we can measure down to 1 MHz.

Description

Citation

Journal of Physics: Conference Series. 2023, vol. 2568, issue 012001, p. 1-10.
https://iopscience.iop.org/article/10.1088/1742-6596/2568/1/012001

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported
Citace PRO