Detekce phishingových stránek pomocí metod strojového učení
but.committee | doc. Ing. Petr Matoušek, Ph.D., M.A. (předseda) Dr. Ing. Petr Peringer (člen) Ing. Matěj Grégr, Ph.D. (člen) doc. Ing. Michal Španěl, Ph.D. (člen) Ing. Lukáš Kekely, Ph.D. (člen) | cs |
but.defence | Student nejprve prezentoval výsledky, kterých dosáhl v rámci své práce. Komise se poté seznámila s hodnocením vedoucího a posudkem oponenta práce. Student následně odpověděl na otázky přítomných. Komise se na základě posudku oponenta, hodnocení vedoucího, přednesené prezentace a odpovědí studenta na položené otázky rozhodla práci hodnotit stupněm A. | cs |
but.jazyk | angličtina (English) | |
but.program | Informační technologie | cs |
but.result | práce byla úspěšně obhájena | cs |
dc.contributor.advisor | Hranický, Radek | en |
dc.contributor.author | Polóni, Peter | en |
dc.contributor.referee | Poliakov, Daniel | en |
dc.date.created | 2024 | cs |
dc.description.abstract | Phishingové stránky sú veľmi nebezpečnou hrozbou, čo znamená, že úspešná a spoľahlivá detekcia týchto stránok je veľmi doležitá. Tieto hrozby detekujem s využitím prístupu strojového učenia. Tento prístup je efektívny a dokáže odhaliť aj hrozby, s ktorými sa nikdy predtým nestretol. Ako dôveryhodné zdroje dát URL som využil OpenPhish a PhishTank. Z dôveryhodných URL som nazbieral HTML a JavaScript kód webových stránok. Zber dát som vykonal pomocou programu, ktorý som pre tento účel vytvoril. S využitím vektoru príznakov, ktorý sa skladá z 82 numerických príznakov, som vytvoril štyri klasifikátory. Následne som ich vyladil a experimentálne overil presnosť ich predikcií. Najpresnejší model je XGBoost klasifikátor, ktorý dosiahol vyváženú presnosť až 97.03% a FPR 2.22%, počas predikovania dát, ktoré nikdy predtým nevidel. Výsledky ukazujú, že tento prístup detekcie je schopný identifikovať phishingovú stránku aj v praxi. Toto som overil aj implementovaním webového rozšírenia pre prehliadač Chrome, ktoré detekuje phishigové stránky. Toto rozšírenie je vytvorené nad rámec zadania. | en |
dc.description.abstract | Phishing web pages are a very dangerous threat, which means that successful and reliable detection of these pages is essential. I detect these threats by utilizing a machine learning based approach. This approach is effective and can detect even threats it has never encountered. As credible sources of URLs, I used sources like OpenPhish and PhishTank. I gathered the HTML and JavaScript code of web pages from the trusted URLs by utilizing a data-gathering program that I created. Using the feature vector composed of 82 numerical features, I created four classifiers. Then, I tuned and experimentally tested the performance of these classifiers. The best-performing model is the XGBoost classifier, which achieved a balanced accuracy score of 97.03% and a false positive rate of 2.22% while making predictions on previously unseen data. Results show that this detection approach can identify phishing web pages even in a non-training environment, which I verified by implementing a phishing-detecting web extension for the Chrome browser. Implementing this extension is beyond the scope of the assignment of this thesis. | cs |
dc.description.mark | A | cs |
dc.identifier.citation | POLÓNI, P. Detekce phishingových stránek pomocí metod strojového učení [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. 2024. | cs |
dc.identifier.other | 153621 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/246897 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně. Fakulta informačních technologií | cs |
dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
dc.subject | HTML | en |
dc.subject | JavaScript | en |
dc.subject | dátová sada | en |
dc.subject | zber dát | en |
dc.subject | strojové učenie | en |
dc.subject | detekcia phishingu | en |
dc.subject | HTML | cs |
dc.subject | JavaScript | cs |
dc.subject | dataset | cs |
dc.subject | gathering data | cs |
dc.subject | machine learning | cs |
dc.subject | phishing detection | cs |
dc.title | Detekce phishingových stránek pomocí metod strojového učení | en |
dc.title.alternative | Phishing Webpage Detection using Machine Learning Methods | cs |
dc.type | Text | cs |
dc.type.driver | bachelorThesis | en |
dc.type.evskp | bakalářská práce | cs |
dcterms.dateAccepted | 2024-06-11 | cs |
dcterms.modified | 2024-06-17-08:45:34 | cs |
eprints.affiliatedInstitution.faculty | Fakulta informačních technologií | cs |
sync.item.dbid | 153621 | en |
sync.item.dbtype | ZP | en |
sync.item.insts | 2025.03.18 21:01:08 | en |
sync.item.modts | 2025.01.15 15:32:04 | en |
thesis.discipline | Informační technologie | cs |
thesis.grantor | Vysoké učení technické v Brně. Fakulta informačních technologií. Ústav informačních systémů | cs |
thesis.level | Bakalářský | cs |
thesis.name | Bc. | cs |