Comparing Classifier's Performance Based on Confidence Interval of the ROC

Loading...
Thumbnail Image

Authors

Malach, Tobias
Pomenkova, Jitka

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

This paper proposes a new methodology for comparing} two performance methods based on confidence interval for the ROC curve. The methods performed and compared are two algorithms for face recognition. The novelty of the paper is three-fold: i) designing a methodology for the comparison of decision making algorithms via confidence intervals of ROC curves; ii) investigating how sample sizes influence the properties of the particular methods; iii) recommendations for a general comparison of decision making algorithms via confidence intervals of ROC curves. To support our conclusions we investigate and demonstrate several approaches for constructing parametric confidence intervals on real data. Thus, we present a non-traditional and reliable way of reporting pattern recognition results using ROC curves with confidence intervals.

Description

Citation

Radioengineering. 2018 vol. 27, č. 3, s. 827-834. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2018/18_03_0827_0834.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO