Graph Neural Networks in Epilepsy Surgery

Loading...
Thumbnail Image
Date
Authors
Hrtoňová, Valentina
ORCID
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstract
Úspěch epileptochirurgického zákroku závisí na přesné lokalizaci epileptogenní zóny (EZ), avšak pouze 60% pacientů je po operaci bez záchvatů, což je často způsobeno nepřesnou identifikací EZ. Tato práce představuje novou metodu lokalizace EZ využívající grafové neuronové sítě (GNN) k analýze interiktálních biomarkerů - konkrétně interiktálních spiků a relativní entropie. Modely GNN byly využity pro lokalizaci kontaktů elektrod v resekované zóně vzniku záchvatu na základě dat z interiktální stereoelektroencefalografie a validovány na souboru klinických dat 37 pacientů ze dvou institucí. Nejlépe hodnocený model GNN - Graph Attention Network - dosáhl mediánu Area Under the Receiver Operating Characteristic (AUROC) 0,971 a mediánu Area Under the Precision-Recall Curve (AUPRC) 0,525 v souboru 19 pacientů s dobrým pooperačním výsledkem, přičemž v obou metrikách statisticky významně překonal referenční model založený na četnosti spiků (Wilcoxon Signed Rank test, p
Successful epilepsy surgery relies on precise localization of the epileptogenic zone (EZ), yet only about 60% of patients become seizure-free post-surgery often due to inaccurate EZ identification. This thesis presents a novel method for EZ localization using Graph Neural Networks (GNNs) to analyze interictal biomarkers, specifically interictal spikes and relative entropy. The GNN models were used to localize resected seizure-onset zone electrode contacts based on interictal stereoelectroencephalography data, validated on a clinical dataset of 37 patients from two institutions. The best-performing GNN model - Graph Attention Network - scored a median Area Under the Receiver Operating Characteristic (AUROC) of 0.971 and a median Area Under the Precision-Recall Curve (AUPRC) of 0.525 across a cohort of 19 patients with a good surgical outcome, significantly outperforming a benchmark model based on spike rates (Wilcoxon Signed Rank test, p
Description
Citation
HRTOŇOVÁ, V. Graph Neural Networks in Epilepsy Surgery [online]. Brno: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. 2024.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
bez specializace
Comittee
doc. Ing. Radovan Jiřík, Ph.D. (předseda) prof. Ing. Valentýna Provazník, Ph.D. (místopředseda) Ing. Tomáš Vičar, Ph.D. (člen) Ing. Vratislav Harabiš, Ph.D. (člen) doc. Mgr. Ing. Karel Sedlář, Ph.D. (člen) doc. Ing. Jana Kolářová, Ph.D. (člen)
Date of acceptance
2024-06-10
Defence
Studentka prezentovala výsledky své práce a komise byla seznámena s posudky. Prof. Provazník položila otázku: Uvažuje ukázka další epileptogenní ložiska? Byly elektrody zavedeny symetricky u konkrétního pacienta? Ing. Vičar položil otázku: Jak je složitá implementace GAT modelů? Pracovala jste bez použití již implementovaných knihoven? Byl zjišťován vliv pre-procesingu na výsledky? Doc. Sedlář položil otázku: Budete dále navazovat na práci? Studentka obhájila diplomovou práci a odpověděla na otázky členů komise a oponenta.
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení
DOI
Collections
Citace PRO