Influence of Measured Radio Map Interpolation on Indoor Positioning Algorithms
dc.contributor.author | Bravenec, Tomáš | cs |
dc.contributor.author | Gould, Michael | cs |
dc.contributor.author | Frýza, Tomáš | cs |
dc.contributor.author | Torres-Sospedra, Joaquín | cs |
dc.coverage.issue | 17 | cs |
dc.coverage.volume | 23 | cs |
dc.date.issued | 2023-07-24 | cs |
dc.description.abstract | Indoor positioning and navigation increasingly has become popular and there are many different approaches, using different technologies. In nearly all of the approaches the locational accuracy depends on signal propagation characteristics of the environment. What makes many of these approaches similar is the requirement of creating a signal propagation Radio Map (RM) by analysing the environment. As this is usually done on a regular grid, the collection of Received Signal Strength Intensity (RSSI) data at every Reference Point (RP) of a RM is a time consuming task. With indoor positioning being in the focus of the research community, the reduction in time required for collection of RMs is very useful as it allows researchers to spend more time with research instead of data collection. In this paper we analyse the options for reducing the time required for the acquisition of RSSI information. We approach this by collecting initial RMs of Wi-Fi signal strength using 5 ESP32 micro controllers working in monitoring mode and placed around our office. We then analyse the influence the approximation of RSSI values in unreachable places has, by using linear interpolation and Gaussian Process Regression (GPR) to find balance between final positioning accuracy, computing complexity, and time requirements for the initial data collection. We conclude that the computational requirements can be significantly lowered, while not affecting the positioning error, by using RM with a single sample per RP generated considering many measurements. | en |
dc.format | text | cs |
dc.format.extent | 20044-20054 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | IEEE SENSORS JOURNAL. 2023, vol. 23, issue 17, p. 20044-20054. | en |
dc.identifier.doi | 10.1109/JSEN.2023.3296752 | cs |
dc.identifier.issn | 1530-437X | cs |
dc.identifier.orcid | 0000-0001-5749-8389 | cs |
dc.identifier.orcid | 0000-0001-7313-6142 | cs |
dc.identifier.other | 184028 | cs |
dc.identifier.scopus | 6507475832 | cs |
dc.identifier.uri | http://hdl.handle.net/11012/214349 | |
dc.language.iso | en | cs |
dc.publisher | IEEE | cs |
dc.relation.ispartof | IEEE SENSORS JOURNAL | cs |
dc.relation.uri | https://ieeexplore.ieee.org/document/10192546 | cs |
dc.rights | (C) IEEE | cs |
dc.rights.access | openAccess | cs |
dc.rights.sherpa | http://www.sherpa.ac.uk/romeo/issn/1530-437X/ | cs |
dc.subject | Indoor Localization | en |
dc.subject | Indoor Positioning | en |
dc.subject | Interpolation | en |
dc.subject | Radio Map | en |
dc.subject | RSSI | en |
dc.subject | Wi-Fi | en |
dc.subject | Wireless communication | en |
dc.title | Influence of Measured Radio Map Interpolation on Indoor Positioning Algorithms | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | acceptedVersion | en |
sync.item.dbid | VAV-184028 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.03 15:41:48 | en |
sync.item.modts | 2025.01.17 15:17:59 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav radioelektroniky | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- JSEN.2023.3296752accepted.pdf
- Size:
- 3.07 MB
- Format:
- Adobe Portable Document Format
- Description:
- JSEN.2023.3296752accepted.pdf