On real and complex convexity

dc.contributor.authorAbidi, Jamel
dc.coverage.issue2cs
dc.coverage.volume7cs
dc.date.accessioned2019-01-16T08:47:57Z
dc.date.available2019-01-16T08:47:57Z
dc.date.issued2018cs
dc.description.abstractWe show that the holomorphic differential equation k ′′ ( k + c ) = γ ( k ′ ) 2 is fundamental for the study of a special class of convex and strictly plurisubharmonic functions ( k : C → C be holomorphic and γ,c ∈ C ) . We characterize all the 4 holomorphic non-constant functions F 1 ,F 2 : C → C and g 1 ,g 2 : C n → C such that the function u is convex on C n × C , where u ( z,w ) = | F 1 ( w ) − g 1 ( z ) | 2 + | F 2 ( w ) − g 2 ( z ) | 2 , ( z,w ) ∈ C n × C .en
dc.formattextcs
dc.format.extent85-109cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2018 vol. 7, č. 2, s. 85-109. ISSN 1805-3629cs
dc.identifier.doi10.13164/ma.2018.08en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/137314
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/7_2/ma_7_2_abidi_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.subjectAnalytic convex and plurisubharmonic functionsen
dc.subjectharmonic functionen
dc.subjectinequalitiesen
dc.subjectholomorphic differential equationen
dc.subjectanalysisen
dc.subjectstrictlyen
dc.titleOn real and complex convexityen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ma_7_2_abidi_final.pdf
Size:
865.5 KB
Format:
Adobe Portable Document Format
Description:
Collections