On real and complex convexity

Loading...
Thumbnail Image

Date

Authors

Abidi, Jamel

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky

ORCID

Altmetrics

Abstract

We show that the holomorphic differential equation k ′′ ( k + c ) = γ ( k ′ ) 2 is fundamental for the study of a special class of convex and strictly plurisubharmonic functions ( k : C → C be holomorphic and γ,c ∈ C ) . We characterize all the 4 holomorphic non-constant functions F 1 ,F 2 : C → C and g 1 ,g 2 : C n → C such that the function u is convex on C n × C , where u ( z,w ) = | F 1 ( w ) − g 1 ( z ) | 2 + | F 2 ( w ) − g 2 ( z ) | 2 , ( z,w ) ∈ C n × C .

Description

Citation

Mathematics for Applications. 2018 vol. 7, č. 2, s. 85-109. ISSN 1805-3629
http://ma.fme.vutbr.cz/archiv/7_2/ma_7_2_abidi_final.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO