Model Ensembeling: A simple way of improving model performance for chromosome classification

but.event.date26.04.2022cs
but.event.titleSTUDENT EEICT 2022cs
dc.contributor.authorPijáčková, Kristýna
dc.contributor.authorGotthans, Tomáš
dc.contributor.authorGotthans, Jakub
dc.date.accessioned2022-12-06T13:21:59Z
dc.date.available2022-12-06T13:21:59Z
dc.date.issued2022cs
dc.description.abstractThis paper deals with chromosome classification via convolutional neural networks and model ensembling. Chromosome classification is a part of a procedure in karyotyping, where the chromosomes should be paired and ordered so that they are prepared for inspection of abnormalities. Model ensembling was used as a technique to improve overall classification accuracy by using all of the trained models. We achieved 94.8 \% accuracy for a Q-band BioImlab dataset and 97.48 \% for a G-band chromosome CIR dataset.en
dc.formattextcs
dc.format.extent158-161cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers. s. 158-161. ISBN 978-80-214-6030-0cs
dc.identifier.doi10.13164/eeict.2022.158
dc.identifier.isbn978-80-214-6030-0
dc.identifier.urihttp://hdl.handle.net/11012/208626
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings II of the 28st Conference STUDENT EEICT 2022: Selected papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectchromosome classification, deep learning, model ensembling, convolutional neural networksen
dc.titleModel Ensembeling: A simple way of improving model performance for chromosome classificationen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
158_eeict_2022.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Description: