Model Ensembeling: A simple way of improving model performance for chromosome classification
but.event.date | 26.04.2022 | cs |
but.event.title | STUDENT EEICT 2022 | cs |
dc.contributor.author | Pijáčková, Kristýna | |
dc.contributor.author | Gotthans, Tomáš | |
dc.contributor.author | Gotthans, Jakub | |
dc.date.accessioned | 2022-12-06T13:21:59Z | |
dc.date.available | 2022-12-06T13:21:59Z | |
dc.date.issued | 2022 | cs |
dc.description.abstract | This paper deals with chromosome classification via convolutional neural networks and model ensembling. Chromosome classification is a part of a procedure in karyotyping, where the chromosomes should be paired and ordered so that they are prepared for inspection of abnormalities. Model ensembling was used as a technique to improve overall classification accuracy by using all of the trained models. We achieved 94.8 \% accuracy for a Q-band BioImlab dataset and 97.48 \% for a G-band chromosome CIR dataset. | en |
dc.format | text | cs |
dc.format.extent | 158-161 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers. s. 158-161. ISBN 978-80-214-6030-0 | cs |
dc.identifier.doi | 10.13164/eeict.2022.158 | |
dc.identifier.isbn | 978-80-214-6030-0 | |
dc.identifier.uri | http://hdl.handle.net/11012/208626 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | chromosome classification, deep learning, model ensembling, convolutional neural networks | en |
dc.title | Model Ensembeling: A simple way of improving model performance for chromosome classification | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 158_eeict_2022.pdf
- Size:
- 1.02 MB
- Format:
- Adobe Portable Document Format
- Description: