Model Ensembeling: A simple way of improving model performance for chromosome classification
Loading...
Date
Authors
Pijáčková, Kristýna
Gotthans, Tomáš
Gotthans, Jakub
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
ORCID
Altmetrics
Abstract
This paper deals with chromosome classification via convolutional neural networks and model ensembling. Chromosome classification is a part of a procedure in karyotyping, where the chromosomes should be paired and ordered so that they are prepared for inspection of abnormalities. Model ensembling was used as a technique to improve overall classification accuracy by using all of the trained models. We achieved 94.8 \% accuracy for a Q-band BioImlab dataset and 97.48 \% for a G-band chromosome CIR dataset.
Description
Citation
Proceedings II of the 28st Conference STUDENT EEICT 2022: Selected papers. s. 158-161. ISBN 978-80-214-6030-0
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
