Nonlinear Finite Element Analysis-based flow distribution and heat transfer model

dc.contributor.authorLétal, Tomášcs
dc.contributor.authorTurek, Vojtěchcs
dc.contributor.authorBabička Fialová, Dominikacs
dc.contributor.authorJegla, Zdeněkcs
dc.coverage.issue7cs
dc.coverage.volume13cs
dc.date.issued2020-04-02cs
dc.description.abstractA new strategy for fast, approximate analyses of fluid flow and heat transfer is presented. It is based on Finite Element Analysis (FEA) and is intended for large yet structurally fairly simple heat transfer equipment commonly used in process and power industries (e.g., cross-flow tube bundle heat exchangers), which can be described using sets of interconnected 1-D meshes. The underlying steadystate model couples an FEA-based (linear) predictor step with a nonlinear corrector step, which results in the ability to handle both laminar and turbulent flows. There are no limitations in terms of the allowed temperature range other than those potentially stemming from the usage of fluid physical property computer libraries. Since the fluid flow submodel has already been discussed in the referenced conference paper, the present article focuses on the prediction of the tube side and the shell side temperature fields. A simple cross-flow tube bundle heat exchanger from the literature and a heat recovery hot water boiler in an existing combined heat and power plant, for which stream data are available from its operator, are evaluated to assess the performance of the model. To gain further insight, the results obtained using the model for the heat recovery hot water boiler are also compared to the values yielded by an industrystandard heat transfer equipment design software package. Although the presented strategy is still a “work in progress” and requires thorough validation, the results obtained thus far suggest it may be a promising research direction.en
dc.formattextcs
dc.format.extent1-20cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationENERGIES. 2020, vol. 13, issue 7, p. 1-20.en
dc.identifier.doi10.3390/en13071664cs
dc.identifier.issn1996-1073cs
dc.identifier.orcid0000-0002-5905-0374cs
dc.identifier.orcid0000-0002-9087-1840cs
dc.identifier.orcid0000-0001-6916-5514cs
dc.identifier.orcid0000-0002-6067-4758cs
dc.identifier.other163202cs
dc.identifier.researcheridI-9654-2017cs
dc.identifier.scopus55321892400cs
dc.identifier.scopus35365256400cs
dc.identifier.scopus56941664000cs
dc.identifier.scopus22034577200cs
dc.identifier.urihttp://hdl.handle.net/11012/188957
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofENERGIEScs
dc.relation.urihttps://www.mdpi.com/1996-1073/13/7/1664cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1996-1073/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectflow distributionen
dc.subjectprocess and power industry equipmenten
dc.subjectFinite Element Analysisen
dc.titleNonlinear Finite Element Analysis-based flow distribution and heat transfer modelen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-163202en
sync.item.dbtypeVAVen
sync.item.insts2025.02.03 15:49:22en
sync.item.modts2025.01.17 18:41:09en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav procesního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
energies1301664v2.pdf
Size:
5.97 MB
Format:
Adobe Portable Document Format
Description:
energies1301664v2.pdf