Studium chování vybraných kovů v systému půda-kal/biochar-rostlina
Loading...
Date
Authors
Sysel, Petr
Advisor
Referee
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta chemická
ORCID
Abstract
Aplikace čistírenských kalů na zemědělskou půdu vnáší do půdy esenciální živiny pro růst rostlin, ale také kontaminanty, jako jsou rizikové prvky. Koaplikace biouhlu získaného z čistírenských kalů s běžným čistírenským kalem by měla snížit biodostupnost rizikových prvků pro zemědělské plodiny. Během experimentu byla provedena řada modifikovaných BCR a CaCl2 extrakcí, aby se stanovila schopnost sorbovat rizikové prvky biouhlem. Bylo potvrzeno, že pyrolýza čistírenských kalů snižuje biologickou dostupnost rizikových prvků. Dále bylo zjištěno, že biouhel může sorbovat a tím snižovat biologickou dostupnost rizikových prvků ve směsi čistírenského kalu/biouhlu o poměru 2:1. Bylo pozorováno významné snížení biologické dostupnosti niklu o 22 %. Grow-box experiment byl proveden s použitím Avena sativa v květináčích naplněných umělou a reálnou půdou. Koncentrace (w/w) čistírenského kalu (SS) a biouhlu (BC) testované v experimentu byly: 5 % SS; 10 % SS; 5 % SS s 2,5 % BC; a 10 % SS s 5 % BC. Rostliny byly schopny vyrůst pouze v květináčích s reálnou půdou. Při koncentraci čistírenského kalu 10 % došlo k úplné inhibici růstu rostlin, i v přítomnosti biouhlu. Aplikace čistírenských kalů zvýšila koncentrace rizikových prvků v kořenech rostlin. Bylo zjištěno, že společná aplikace biouhlu s čistírenskými kaly snižuje příjem rizikových prvků v kořenech rostlin. Relativní pokles koncentrace rizikových prvků byl 21,2 %; 12,5 %; 15,0 %; 32,0 %; 40,2 %; 53,9 % pro zinek, kadmium, měď, nikl, chrom a olovo. Koncentrace ve stoncích, listech a zrnech rostlin se lišily, v některých případech se podobaly poklesu pozorovanému v kořenech rostlin. Závěrem lze říci, že biouhel získaný z čistírenských kalů má potenciál snížit biologickou dostupnost rizikových prvků při společné aplikaci s čistírenským kalem.
The application of sewage sludge on agricultural soil introduces essential nutrients for plant growth, but also contaminants such as risk elements into the soil. Co-application of sewage sludge derived biochar in addition to sewage sludge should decrease the bioavailability of risk elements to agricultural crops. A series of modified BCR and CaCl2 extractions were carried out, to determine the potential of biochar to sorb risk elements during the experiment. It was confirmed that pyrolysis of sewage sludge decreases the bioavailability of risk elements. Furthermore, it was found that biochar could sorb and therefore decrease the bioavailability of risk elements in the sewage sludge/biochar mixture in a 2:1 ratio. A significant decrease in the bioavailability of nickel was observed by 22 %. Grow-box experiment was done using Avena sativa in pots filled with artificial and real soil. Concentrations (w/w) of sewage sludge (SS) and biochar (BC) tested in experiment were: 5 % of SS; 10 % of SS; 5 % of SS with 2,5 % of BC; and 10 % of SS with 5 % of BC. The plants were able to grow fully only in pots with real soil. The concentration of 10% sewage sludge caused complete inhibition of plant growth, even when amended with biochar. Application of sewage sludge increased concentrations of risk elements in plant roots. Co-application of biochar with sewage sludge was found to decrease the intake of risk elements in plant roots. The relative decrease in the concentration of risk elements was 21,2 %; 12,5 %; 15,0 %; 32,0 %; 40,2 %; 53,9 % for zinc, cadmium, copper, nickel, chromium, and lead, respectively. The concentrations in plant stems, leaves, and grains varied, in some cases resembling the decrease found in plant roots. In conclusion, sewage sludge-derived biochar has the potential to decrease the bioavailability of risk elements when coapplied with sewage sludge.
The application of sewage sludge on agricultural soil introduces essential nutrients for plant growth, but also contaminants such as risk elements into the soil. Co-application of sewage sludge derived biochar in addition to sewage sludge should decrease the bioavailability of risk elements to agricultural crops. A series of modified BCR and CaCl2 extractions were carried out, to determine the potential of biochar to sorb risk elements during the experiment. It was confirmed that pyrolysis of sewage sludge decreases the bioavailability of risk elements. Furthermore, it was found that biochar could sorb and therefore decrease the bioavailability of risk elements in the sewage sludge/biochar mixture in a 2:1 ratio. A significant decrease in the bioavailability of nickel was observed by 22 %. Grow-box experiment was done using Avena sativa in pots filled with artificial and real soil. Concentrations (w/w) of sewage sludge (SS) and biochar (BC) tested in experiment were: 5 % of SS; 10 % of SS; 5 % of SS with 2,5 % of BC; and 10 % of SS with 5 % of BC. The plants were able to grow fully only in pots with real soil. The concentration of 10% sewage sludge caused complete inhibition of plant growth, even when amended with biochar. Application of sewage sludge increased concentrations of risk elements in plant roots. Co-application of biochar with sewage sludge was found to decrease the intake of risk elements in plant roots. The relative decrease in the concentration of risk elements was 21,2 %; 12,5 %; 15,0 %; 32,0 %; 40,2 %; 53,9 % for zinc, cadmium, copper, nickel, chromium, and lead, respectively. The concentrations in plant stems, leaves, and grains varied, in some cases resembling the decrease found in plant roots. In conclusion, sewage sludge-derived biochar has the potential to decrease the bioavailability of risk elements when coapplied with sewage sludge.
Description
Citation
SYSEL, P. Studium chování vybraných kovů v systému půda-kal/biochar-rostlina [online]. Brno: Vysoké učení technické v Brně. Fakulta chemická. 2025.
Document type
Document version
Date of access to the full text
Language of document
en
Study field
bez specializace
Comittee
doc. Mgr. Renata Komendová, Ph.D. (člen)
prof. Ing. Jozef Krajčovič, Ph.D. (předseda)
doc. Mgr. Michaela Vašinová Galiová, Ph.D. (místopředseda)
doc. MVDr. Helena Zlámalová Gargošová, Ph.D. (člen)
doc. Ing. Martin Pavlas, Ph.D. (člen)
Date of acceptance
2025-05-29
Defence
The student presented his thesis, its content and results.
Afterwards, the supervisor's and opponent's opinions were read and questions were answered.
Other members of the committee joined the discussion with the following questions.
Prof. J. Krajčovič, Ph.D.: What experiments did you conduct for your thesis?
How many batches of the sludge did you obtain for the experiments?
Assoc. Prof. M. Vašinová Galiová, Ph.D : Can you explain the difference between artificial soil and real soil?
What is the typical composition of the artificial soil? Can we select something better than the artificial soil?
The student answered all the additional questions of the members of the Commission that were raised during the discussion on the issue. In the discussion the student demonstrated excellent orientation in the given issue. The discussion was followed by the evaluation of the thesis. The student demonstrated not only excellent professional knowledge but also the ability to independently present his results.
Result of defence
práce byla úspěšně obhájena
