Deep Reinforcement Learning in Multiple UAV-and-RIS Assisted Cognitive Radio System

dc.contributor.authorQian, S.
dc.contributor.authorHuo, L.
dc.contributor.authorQian, Y.
dc.contributor.authorShi, L.
dc.coverage.issue1cs
dc.coverage.volume35cs
dc.date.accessioned2026-02-18T08:20:42Z
dc.date.issued2026-04cs
dc.description.abstractCognitive radio (CR) systems enable dynamic spectrum sharing but face substantial challenges in optimizing the rates of secondary users (SUs), particularly in scenarios where multiple SUs compete for the limited resources of the primary user (PU). To address this issue, we propose a multi-unmanned aerial vehicle (UAV)-assisted CR system in which reconfigurable intelligent surfaces (RISs) are mounted on UAVs to enhance spectral efficiency. Furthermore, we cast this challenge as a multi-agent Markov decision process (MDP), providing a formal framework to explore the critical trade-off between independent decision-making and centralized coordination. Consequently, we leverage established deep reinforcement learning algorithms to probe this trade-off. To provide a comprehensive performance evaluation, we adopt a Multi-Agent Proximal Policy Optimization (MAPPO) algorithm to maximize the sum rate of the proposed system. Numerical results demonstrate that the developed UAV-RIS-assisted system adopting the MAPPO algorithm can achieve a faster convergent speed and higher sum rate when compared with that adopting Independent Proximal Policy Optimization (IPPO) and MAPPO with a clipping scheme. In addition, for the MAPPO with a clipping scheme, a selected moderate clipping parameter can effectively balance the trade-off between training stability and learning efficiency.en
dc.formattextcs
dc.format.extent117-128cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2026 vol. 35, iss. 1, p. 117-128. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2026.0117en
dc.identifier.issn1210-2512
dc.identifier.urihttps://hdl.handle.net/11012/256273
dc.language.isoencs
dc.publisherRadioengineering Societycs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2026/26_01_0117_0128.pdfcs
dc.rightsCreative Commons Attribution 4.0 International licenseen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectCognitive radioen
dc.subjectUAVen
dc.subjectRISen
dc.subjectreinforcement learningen
dc.subjectmulti-agenten
dc.subjectMAPPOen
dc.subjectspectrum sharingen
dc.titleDeep Reinforcement Learning in Multiple UAV-and-RIS Assisted Cognitive Radio Systemen
dc.type.driverjournal articleen
dc.type.statuspublishedVersionen
dc.type.versionFinal Published Versionen
eprints.affiliatedInstitution.facultyFakulta elektrotechniky a komunikačních technologiícs

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
26_01_0117_0128.pdf
Size:
1.84 MB
Format:
Adobe Portable Document Format

Collections