Machine Learning-Based Node Characterization for Smart Grid Demand Response Flexibility Assessment

Loading...
Thumbnail Image

Authors

Krč, Rostislav
Floriánová, Martina
Podroužek, Jan
Apeltauer, Tomáš
Stupka, Václav
Pitner, Tomáš

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Altmetrics

Abstract

As energy distribution systems evolve from a traditional hierarchical load structure towards distributed smart grids, flexibility is increasingly investigated as both a key measure and core challenge of grid balancing. This paper contributes to the theoretical framework for quantifying network flexibility potential by introducing a machine learning based node characterization. In particular, artificial neural networks are considered for classification of historic demand data from several network substations. Performance of the resulting classifiers is evaluated with respect to clustering analysis and parameter space of the models considered, while the bootstrapping based statistical evaluation is reported in terms of mean confusion matrices. The resulting meta-models of individual nodes can be further utilized on a network level to mitigate the difficulties associated with identifying, implementing and actuating many small sources of energy flexibility, compared to the few large ones traditionally acknowledged.
As energy distribution systems evolve from a traditional hierarchical load structure towards distributed smart grids, flexibility is increasingly investigated as both a key measure and core challenge of grid balancing. This paper contributes to the theoretical framework for quantifying network flexibility potential by introducing a machine learning based node characterization. In particular, artificial neural networks are considered for classification of historic demand data from several network substations. Performance of the resulting classifiers is evaluated with respect to clustering analysis and parameter space of the models considered, while the bootstrapping based statistical evaluation is reported in terms of mean confusion matrices. The resulting meta-models of individual nodes can be further utilized on a network level to mitigate the difficulties associated with identifying, implementing and actuating many small sources of energy flexibility, compared to the few large ones traditionally acknowledged.

Description

Citation

Sustainability. 2021, vol. 13, issue 5, p. 1-18.
https://www.mdpi.com/2071-1050/13/5/2954/pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International
Citace PRO