Signal Detection for QPSK Based Cognitive Radio Systems using Support Vector Machines

Loading...
Thumbnail Image

Authors

Mushtaq, M. Tahir
Khan, Inayatullah
Khan, M. S.
Koudelka, Otto

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Společnost pro radioelektronické inženýrství

ORCID

Altmetrics

Abstract

Cognitive radio based network enables opportunistic dynamic spectrum access by sensing, adopting and utilizing the unused portion of licensed spectrum bands. Cognitive radio is intelligent enough to adapt the communication parameters of the unused licensed spectrum. Spectrum sensing is one of the most important tasks of the cognitive radio cycle. In this paper, the auto-correlation function kernel based Support Vector Machine (SVM) classifier along with Welch's Periodogram detector is successfully implemented for the detection of four QPSK (Quadrature Phase Shift Keying) based signals propagating through an AWGN (Additive White Gaussian Noise) channel. It is shown that the combination of statistical signal processing and machine learning concepts improve the spectrum sensing process and spectrum sensing is possible even at low Signal to Noise Ratio (SNR) values up to -50 dB.

Description

Citation

Radioengineering. 2015 vol. 24, č. 1, s. 192-198. ISSN 1210-2512
http://www.radioeng.cz/fulltexts/2015/15_01_0192_0198.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 3.0 Unported License
Citace PRO