Enhancing Cybersecurity Curriculum Development: AI-Driven Mapping and Optimization Techniques
dc.contributor.author | Dzurenda, Petr | cs |
dc.contributor.author | Ricci, Sara | cs |
dc.contributor.author | Sikora, Marek | cs |
dc.contributor.author | Stejskal, Michal | cs |
dc.contributor.author | Lendak, Imre | cs |
dc.contributor.author | Adao, Pedro | cs |
dc.date.accessioned | 2025-02-18T11:36:13Z | |
dc.date.available | 2025-02-18T11:36:13Z | |
dc.date.issued | 2024-07-30 | cs |
dc.description.abstract | Cybersecurity has become important, especially during the last decade. The significant growth of information technologies, internet of things, and digitalization in general, increased the interest in cybersecurity professionals significantly. While the demand for cybersecurity professionals is high, there is a significant shortage of these professionals due to the very diverse landscape of knowledge and the complex curriculum accreditation process. In this article, we introduce a novel AI-driven mapping and optimization solution enabling cybersecurity curriculum development. Our solution leverages machine learning and integer linear programming optimization, offering an automated, intuitive, and user-friendly approach. It is designed to align with the European Cybersecurity Skills Framework (ECSF) released by the European Union Agency for Cybersecurity (ENISA) in 2022. Notably, our innovative mapping methodology enables the seamless adaptation of ECSF to existing curricula and addresses evolving industry needs and trend. We conduct a case study using the university curriculum from Brno University of Technology in the Czech Republic to showcase the efficacy of our approach. The results demonstrate the extent of curriculum coverage according to ECSF profiles and the optimization progress achieved through our methodology. | en |
dc.format | text | cs |
dc.format.extent | 1-10 | cs |
dc.format.mimetype | application/pdf | cs |
dc.identifier.citation | ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security. 2024, p. 1-10. | en |
dc.identifier.doi | 10.1145/3664476.3670467 | cs |
dc.identifier.isbn | 979-8-4007-1718-5 | cs |
dc.identifier.orcid | 0000-0002-4366-3950 | cs |
dc.identifier.orcid | 0000-0003-0842-4951 | cs |
dc.identifier.orcid | 0000-0002-2896-2303 | cs |
dc.identifier.other | 189219 | cs |
dc.identifier.researcherid | AAC-8713-2019 | cs |
dc.identifier.researcherid | R-6057-2018 | cs |
dc.identifier.scopus | 56418733600 | cs |
dc.identifier.scopus | 57126826900 | cs |
dc.identifier.scopus | 57214778197 | cs |
dc.identifier.uri | https://hdl.handle.net/11012/250055 | |
dc.language.iso | en | cs |
dc.publisher | Association for Computing Machinery | cs |
dc.relation.ispartof | ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security | cs |
dc.relation.uri | https://dl.acm.org/doi/10.1145/3664476.3670467 | cs |
dc.rights | Creative Commons Attribution 4.0 International | cs |
dc.rights.access | openAccess | cs |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | cs |
dc.subject | Curricula Design | en |
dc.subject | ECSF framework | en |
dc.subject | Methodology | en |
dc.subject | Cybersecurity Education | en |
dc.title | Enhancing Cybersecurity Curriculum Development: AI-Driven Mapping and Optimization Techniques | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
sync.item.dbid | VAV-189219 | en |
sync.item.dbtype | VAV | en |
sync.item.insts | 2025.02.18 12:36:13 | en |
sync.item.modts | 2025.02.13 15:32:05 | en |
thesis.grantor | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikací | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 3664476.3670467.pdf
- Size:
- 1.95 MB
- Format:
- Adobe Portable Document Format
- Description:
- file 3664476.3670467.pdf