Axiomatic differential geometry II-1 - vector fields
dc.contributor.author | Nishimura, Hirokazu | |
dc.coverage.issue | 2 | cs |
dc.coverage.volume | 1 | cs |
dc.date.accessioned | 2013-03-05T09:45:14Z | |
dc.date.available | 2013-03-20T06:00:07Z | |
dc.date.issued | 2012 | cs |
dc.description.abstract | In our previous paper entitled \Axiomatic di erential geometry I - towards model categories of di erential geometry", we have given a category-theoretic framework of di erential geometry. As the rst part of our series of papers concerned with di erential-geometric developments within the above axiomatic scheme, this paper is devoted to vector elds. The principal result is that the totality of vector elds on a microlinear and Weil exponential object forms a Lie algebra. | en |
dc.format | text | cs |
dc.format.extent | 183-195 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Mathematics for Applications. 2012, 1, č. 2, s. 183-195. ISSN 1805-3629. | cs |
dc.identifier.doi | 10.13164/ma.2012.12 | en |
dc.identifier.issn | 1805-3629 | |
dc.identifier.uri | http://hdl.handle.net/11012/19551 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky | cs |
dc.relation.ispartof | Mathematics for Applications | en |
dc.relation.uri | http://ma.fme.vutbr.cz/archiv/1_2/nishimura2_final.pdf | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky | cs |
dc.rights.access | openAccess | en |
dc.title | Axiomatic differential geometry II-1 - vector fields | en |
dc.type.driver | article | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Ústav matematiky | cs |
eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |