Axiomatic differential geometry II-1 - vector fields

dc.contributor.authorNishimura, Hirokazu
dc.coverage.issue2cs
dc.coverage.volume1cs
dc.date.accessioned2013-03-05T09:45:14Z
dc.date.available2013-03-20T06:00:07Z
dc.date.issued2012cs
dc.description.abstractIn our previous paper entitled \Axiomatic di erential geometry I - towards model categories of di erential geometry", we have given a category-theoretic framework of di erential geometry. As the rst part of our series of papers concerned with di erential-geometric developments within the above axiomatic scheme, this paper is devoted to vector elds. The principal result is that the totality of vector elds on a microlinear and Weil exponential object forms a Lie algebra.en
dc.formattextcs
dc.format.extent183-195cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMathematics for Applications. 2012, 1, č. 2, s. 183-195. ISSN 1805-3629.cs
dc.identifier.doi10.13164/ma.2012.12en
dc.identifier.issn1805-3629
dc.identifier.urihttp://hdl.handle.net/11012/19551
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.relation.ispartofMathematics for Applicationsen
dc.relation.urihttp://ma.fme.vutbr.cz/archiv/1_2/nishimura2_final.pdfcs
dc.rights© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematikycs
dc.rights.accessopenAccessen
dc.titleAxiomatic differential geometry II-1 - vector fieldsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentÚstav matematikycs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
02_06.pdf
Size:
726.73 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections