Axiomatic differential geometry II-1 - vector fields

Loading...
Thumbnail Image
Date
2012
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Altmetrics
Abstract
In our previous paper entitled \Axiomatic di erential geometry I - towards model categories of di erential geometry", we have given a category-theoretic framework of di erential geometry. As the rst part of our series of papers concerned with di erential-geometric developments within the above axiomatic scheme, this paper is devoted to vector elds. The principal result is that the totality of vector elds on a microlinear and Weil exponential object forms a Lie algebra.
Description
Keywords
Citation
Mathematics for Applications. 2012, 1, č. 2, s. 183-195. ISSN 1805-3629.
http://ma.fme.vutbr.cz/archiv/1_2/nishimura2_final.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav matematiky
Collections
Citace PRO