Voice Activity Detection

Loading...
Thumbnail Image

Date

Authors

Ent, Petr

Mark

A

Journal Title

Journal ISSN

Volume Title

Publisher

Vysoké učení technické v Brně. Fakulta informačních technologií

ORCID

Abstract

Práce pojednává o využití support vector machines v detekci řečové aktivity. V první části jsou zkoumány různé druhy příznaků, jejich extrakce a zpracování a je nalezena jejich optimální kombinace, která podává nejlepší výsledky. Druhá část představuje samotný systém pro detekci řečové aktivity a ladění jeho parametrů. Nakonec jsou výsledky porovnány s dvěma dalšími systémy, založenými na odlišných principech. Pro testování a ladění byla použita ERT broadcast news databáze. Porovnání mezi systémy bylo pak provedeno na databázi z NIST06 Rich Test Evaluations.
This thesis deals with usage Support Vector Machines (SVM) for Speech Activity Detection (SAD). The first part of the thesis deals with comparison of different feature extractions and different methods of construction supervectors for classifying speech using SVM. The second part presents SVM based SAD system. All experiments were performed on ERT broadcast new database. Final comparison with two other approaches (phoneme and GMM based) was done on standard NIST 2006 Rich Test Evaluation database.

Description

Citation

ENT, P. Voice Activity Detection [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. .

Document type

Document version

Date of access to the full text

Language of document

en

Study field

Počítačová grafika a multimédia

Comittee

Date of acceptance

Defence

Result of defence

práce byla úspěšně obhájena

DOI

Collections

Endorsement

Review

Supplemented By

Referenced By

Citace PRO