Voice Activity Detection
Loading...
Date
Authors
Ent, Petr
ORCID
Advisor
Referee
Mark
A
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně. Fakulta informačních technologií
Abstract
Práce pojednává o využití support vector machines v detekci řečové aktivity. V první části jsou zkoumány různé druhy příznaků, jejich extrakce a zpracování a je nalezena jejich optimální kombinace, která podává nejlepší výsledky. Druhá část představuje samotný systém pro detekci řečové aktivity a ladění jeho parametrů. Nakonec jsou výsledky porovnány s dvěma dalšími systémy, založenými na odlišných principech. Pro testování a ladění byla použita ERT broadcast news databáze. Porovnání mezi systémy bylo pak provedeno na databázi z NIST06 Rich Test Evaluations.
This thesis deals with usage Support Vector Machines (SVM) for Speech Activity Detection (SAD). The first part of the thesis deals with comparison of different feature extractions and different methods of construction supervectors for classifying speech using SVM. The second part presents SVM based SAD system. All experiments were performed on ERT broadcast new database. Final comparison with two other approaches (phoneme and GMM based) was done on standard NIST 2006 Rich Test Evaluation database.
This thesis deals with usage Support Vector Machines (SVM) for Speech Activity Detection (SAD). The first part of the thesis deals with comparison of different feature extractions and different methods of construction supervectors for classifying speech using SVM. The second part presents SVM based SAD system. All experiments were performed on ERT broadcast new database. Final comparison with two other approaches (phoneme and GMM based) was done on standard NIST 2006 Rich Test Evaluation database.
Description
Keywords
detekce řečové aktivity, směs gaussových rozloľení, support vector machines, extrakce příznaků, porovnání příznaků, ERT databáze televizního vysílání, speech activity detection, voice activity detection, Gaussian Mixture Models, Support Vector Machines, feature extraction, feature comparison, ERT broadcast news database
Citation
ENT, P. Voice Activity Detection [online]. Brno: Vysoké učení technické v Brně. Fakulta informačních technologií. .
Document type
Document version
Date of access to the full text
Language of document
en
Study field
Počítačová grafika a multimédia
Comittee
Date of acceptance
Defence
Result of defence
práce byla úspěšně obhájena
Document licence
Standardní licenční smlouva - přístup k plnému textu bez omezení