Exploiting Support Vector Machine Algorithm to Break the Secret Key

dc.contributor.authorHou, Shourong
dc.contributor.authorZhou, Yujie
dc.contributor.authorLiu, Hongming
dc.contributor.authorZhu, Nianhao
dc.coverage.issue1cs
dc.coverage.volume27cs
dc.date.accessioned2018-06-18T10:30:19Z
dc.date.available2018-06-18T10:30:19Z
dc.date.issued2018-04cs
dc.description.abstractTemplate attacks (TA) and support vector machine (SVM) are two effective methods in side channel attacks (SCAs). Almost all studies on SVM in SCAs assume the required power traces are sufficient, which also implies the number of profiling traces belonging to each class is equivalent. Indeed, in the real attack scenario, there may not be enough power traces due to various restrictions. More specifically, the Hamming Weight of the S-Box output results in 9 binomial distributed classes, which significantly reduces the performance of SVM compared with the uniformly distributed classes. In this paper, the impact of the distribution of profiling traces on the performance of SVM is first explored in detail. And also, we conduct Synthetic Minority Oversampling TEchnique (SMOTE) to solve the problem caused by the binomial distributed classes. By using SMOTE, the success rate of SVM is improved in the testing phase, and SVM requires fewer power traces to recover the key. Besides, TA is selected as a comparison. In contrast to what is perceived as common knowledge in unrestricted scenarios, our results indicate that SVM with proper parameters can significantly outperform TA.en
dc.formattextcs
dc.format.extent289-298cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRadioengineering. 2018 vol. 27, č. 1, s. 289-298. ISSN 1210-2512cs
dc.identifier.doi10.13164/re.2018.0289en
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/82986
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttps://www.radioeng.cz/fulltexts/2018/18_01_0289_0298.pdfcs
dc.rightsCreative Commons Attribution 4.0 Internationalen
dc.rights.accessopenAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.subjectPower analysisen
dc.subjectsupport vector machineen
dc.subjectsynthetic minority oversampling techniqueen
dc.subjectHamming Weight classen
dc.titleExploiting Support Vector Machine Algorithm to Break the Secret Keyen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
18_01_0289_0298.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format
Description:
Collections