A Uniaxial Hysteretic Superelastic Constitutive Model Applied to Additive Manufactured Lattices

dc.contributor.authorSchasching, Mariuscs
dc.contributor.authorČervinek, Ondřejcs
dc.contributor.authorKoutný, Danielcs
dc.contributor.authorPettermann, Heinzcs
dc.contributor.authorTodt, Melaniecs
dc.coverage.issue1cs
dc.coverage.volume25cs
dc.date.accessioned2025-06-11T11:56:25Z
dc.date.available2025-06-11T11:56:25Z
dc.date.issued2024-11-29cs
dc.description.abstractLattice materials with superelastic properties offer great potential for engineering applications, as they are able to undergo large deformations while ensuring the reversibility of the deformations due to stress-induced phase transformation. Adequate prediction of the mechanical response of lattice materials requires models that properly capture the deformation mechanisms of the internal architecture and the material response of the parent material. To analyze large-scale lattices by means of the finite element method, numerical efficiency becomes crucial. For this purpose, we propose a simple approach relying on beam-based modeling in combination with a uniaxial superelastic constitutive material model. The latter is based on polynomial functions, which make it easy to take customer-based material data into account being especially important for additive manufactured materials. To verify our constitutive model, a comparison with a well-established standard model is performed. The capabilities of the beam-based model to predict the mechanical response of lattice materials are evaluated by the comparison to high-fidelity models using continuum elements. We show that beam-based modeling is able to capture the governing deformation mechanisms of the investigated lattices and that our constitutive model is able to capture the smooth stress–strain response of the experimental data that are not available to the standard model.en
dc.formattextcs
dc.format.extent1-7cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationProceedings in Applied Mathematics and Mechanics. 2024, vol. 25, issue 1, p. 1-7.en
dc.identifier.doi10.1002/pamm.202400092cs
dc.identifier.isbn1617-7061cs
dc.identifier.issn1617-7061cs
dc.identifier.orcid0000-0003-1870-7410cs
dc.identifier.orcid0000-0002-5384-8668cs
dc.identifier.other197968cs
dc.identifier.researcheridT-4510-2019cs
dc.identifier.researcheridF-8576-2012cs
dc.identifier.scopus23988874000cs
dc.identifier.urihttps://hdl.handle.net/11012/251922
dc.language.isoencs
dc.publisherJohn Wiley & Sonscs
dc.relation.ispartofProceedings in Applied Mathematics and Mechanicscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/epdf/10.1002/pamm.202400092cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1617-7061/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectsuperelasticen
dc.subjectadditive manufacturingen
dc.subjectlattice structureen
dc.subjectnitinolen
dc.subjectfinite element methoden
dc.titleA Uniaxial Hysteretic Superelastic Constitutive Model Applied to Additive Manufactured Latticesen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-197968en
sync.item.dbtypeVAVen
sync.item.insts2025.06.11 13:56:25en
sync.item.modts2025.06.11 13:32:59en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav konstruovánícs
thesis.grantorVysoké učení technické v Brně. . Technische Universität Wiencs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025Schasching.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format
Description:
file 2025Schasching.pdf