Coherence-encoded synthetic aperture for super-resolution quantitative phase imaging

dc.contributor.authorĎuriš, Miroslavcs
dc.contributor.authorBouchal, Petrcs
dc.contributor.authorRovenská, Katarínacs
dc.contributor.authorChmelík, Radimcs
dc.coverage.issue4cs
dc.coverage.volume7cs
dc.date.accessioned2023-03-09T07:55:09Z
dc.date.available2023-03-09T07:55:09Z
dc.date.issued2022-04-01cs
dc.description.abstractQuantitative phase imaging (QPI) has quickly established its role in identifying rare events and screening in biomedicine or automated image data analysis using artificial intelligence. These and many other applications share the requirement for extensive high-quality datasets, which is challenging to meet because the invariance of the space-bandwidth product (SBP) fundamentally limits the microscope system throughput. Here, we present a method to overcome the SBP limit by achieving QPI super-resolution using a synthetic aperture approach in a holographic microscope with a partially coherent broad source illumination. We exploit intrinsic coherence-gating properties of the partially coherent light combined with the oblique illumination provided by the diffraction on a simple phase grating placed in proximity of the specimen. We sequentially coherence gate the light scattered into each grating's diffraction order, and we use the acquired images to synthesize QPI with significantly increased spatial frequency bandwidth. The resolution of QPI is increased substantially beyond Abbe's diffraction limit while a large field of view of low numerical aperture objectives is kept. This paper presents a thorough theoretical treatment of the coherence-gated imaging process supplemented by a detailed measurement methodology. The capability of the proposed method is demonstrated by imaging a phase resolution target and biological specimens. We envision our work providing an easily implementable super-resolution QPI method particularly suitable for high-throughput biomedical applications.en
dc.formattextcs
dc.format.extent1-10cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAPL Photonics. 2022, vol. 7, issue 4, p. 1-10.en
dc.identifier.doi10.1063/5.0081134cs
dc.identifier.issn2378-0967cs
dc.identifier.other178555cs
dc.identifier.urihttp://hdl.handle.net/11012/209179
dc.language.isoencs
dc.publisherAIP Publishingcs
dc.relation.ispartofAPL Photonicscs
dc.relation.urihttps://aip.scitation.org/doi/10.1063/5.0081134cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2378-0967/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectRESOLUTION IMPROVEMENTen
dc.subjectHOLOGRAPHIC MICROSCOPYen
dc.subjectDIGITAL HOLOGRAPHYen
dc.subjectSuper-resolutionen
dc.titleCoherence-encoded synthetic aperture for super-resolution quantitative phase imagingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-178555en
sync.item.dbtypeVAVen
sync.item.insts2023.03.09 08:55:09en
sync.item.modts2023.03.09 08:14:54en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Facilita experimentální biofotonikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Experimentální biofotonikacs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5.0081134.pdf
Size:
11.15 MB
Format:
Adobe Portable Document Format
Description:
5.0081134.pdf