Analýza stability diskrétních dynamických systémů
| but.committee | doc. Ing. Luděk Nechvátal, Ph.D. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. Ing. Petr Tomášek, Ph.D. (člen) doc. Ing. Jiří Šremr, Ph.D. (člen) prof. RNDr. Miloslav Druckmüller, CSc. (člen) Prof. Bruno Rubino, Ph.D. (člen) Assoc. Prof. Matteo Colangeli, PhD. (člen) | cs |
| but.defence | The student presented their Master's thesis to the examination committee. The thesis supervisor, who was present in person, read their evaluation report aloud. Subsequently, the secretary of the committee read the opponent’s review. Following the presentation of both evaluations, the student responded to the opponent’s questions. | cs |
| but.jazyk | angličtina (English) | |
| but.program | Applied and Interdisciplinary Mathematics | cs |
| but.result | práce byla úspěšně obhájena | cs |
| dc.contributor.advisor | Tomášek, Petr | en |
| dc.contributor.author | Garg, Muskaan | en |
| dc.contributor.referee | Kisela, Tomáš | en |
| dc.date.created | 2025 | cs |
| dc.description.abstract | This thesis presents a comprehensive study of the stability properties of discretetime dynamical systems, with a primary focus on linear difference equations (LDEs) with constant coefficients. After introducing firstorder stability concepts, we extend the analysis to higherorder LDEs via the Schur–Cohn criterion, deriving regions of asymptotic stability in the complex parameter plane. Two illustrative higherorder examples are examined: MATLAB codes perform a bruteforce parameter sweep to map stability regions, while the root locus technique delineates their exact boundaries. Crossvalidation of these methods confirms the accuracy of the computed stability domains. A brief exploration of nonlinear difference equations and nonautonomous linear systems, characterizing their stability under timevarying coefficients through Lyapunov theory. Future work may extend these methods to stochastic or realtime control settings, and to nonlinear or distributedparameter systems. | en |
| dc.description.abstract | This thesis presents a comprehensive study of the stability properties of discretetime dynamical systems, with a primary focus on linear difference equations (LDEs) with constant coefficients. After introducing firstorder stability concepts, we extend the analysis to higherorder LDEs via the Schur–Cohn criterion, deriving regions of asymptotic stability in the complex parameter plane. Two illustrative higherorder examples are examined: MATLAB codes perform a bruteforce parameter sweep to map stability regions, while the root locus technique delineates their exact boundaries. Crossvalidation of these methods confirms the accuracy of the computed stability domains. A brief exploration of nonlinear difference equations and nonautonomous linear systems, characterizing their stability under timevarying coefficients through Lyapunov theory. Future work may extend these methods to stochastic or realtime control settings, and to nonlinear or distributedparameter systems. | cs |
| dc.description.mark | C | cs |
| dc.identifier.citation | GARG, M. Analýza stability diskrétních dynamických systémů [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2025. | cs |
| dc.identifier.other | 165860 | cs |
| dc.identifier.uri | http://hdl.handle.net/11012/254224 | |
| dc.language.iso | en | cs |
| dc.publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství | cs |
| dc.rights | Standardní licenční smlouva - přístup k plnému textu bez omezení | cs |
| dc.subject | discretetime dynamical systems | en |
| dc.subject | linear difference equations | en |
| dc.subject | Schur–Cohn criterion | en |
| dc.subject | stability regions | en |
| dc.subject | root locus | en |
| dc.subject | parametric uncertainty. | en |
| dc.subject | discretetime dynamical systems | cs |
| dc.subject | linear difference equations | cs |
| dc.subject | Schur–Cohn criterion | cs |
| dc.subject | stability regions | cs |
| dc.subject | root locus | cs |
| dc.subject | parametric uncertainty. | cs |
| dc.title | Analýza stability diskrétních dynamických systémů | en |
| dc.title.alternative | Stability analysis of discrete dynamical systems | cs |
| dc.type | Text | cs |
| dc.type.driver | masterThesis | en |
| dc.type.evskp | diplomová práce | cs |
| dcterms.dateAccepted | 2025-06-18 | cs |
| dcterms.modified | 2025-06-20-12:24:33 | cs |
| eprints.affiliatedInstitution.faculty | Fakulta strojního inženýrství | cs |
| sync.item.dbid | 165860 | en |
| sync.item.dbtype | ZP | en |
| sync.item.insts | 2025.08.27 02:58:08 | en |
| sync.item.modts | 2025.08.26 20:20:12 | en |
| thesis.discipline | bez specializace | cs |
| thesis.grantor | Vysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematiky | cs |
| thesis.level | Inženýrský | cs |
| thesis.name | Ing. | cs |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- final-thesis.pdf
- Size:
- 1.81 MB
- Format:
- Adobe Portable Document Format
- Description:
- file final-thesis.pdf
Loading...
- Name:
- appendix-1.zip
- Size:
- 2.37 KB
- Format:
- Unknown data format
- Description:
- file appendix-1.zip
Loading...
- Name:
- review_165860.html
- Size:
- 9.92 KB
- Format:
- Hypertext Markup Language
- Description:
- file review_165860.html
