Analýza stability diskrétních dynamických systémů

but.committeedoc. Ing. Luděk Nechvátal, Ph.D. (předseda) prof. RNDr. Josef Šlapal, CSc. (místopředseda) doc. Ing. Petr Tomášek, Ph.D. (člen) doc. Ing. Jiří Šremr, Ph.D. (člen) prof. RNDr. Miloslav Druckmüller, CSc. (člen) Prof. Bruno Rubino, Ph.D. (člen) Assoc. Prof. Matteo Colangeli, PhD. (člen)cs
but.defenceThe student presented their Master's thesis to the examination committee. The thesis supervisor, who was present in person, read their evaluation report aloud. Subsequently, the secretary of the committee read the opponent’s review. Following the presentation of both evaluations, the student responded to the opponent’s questions.cs
but.jazykangličtina (English)
but.programApplied and Interdisciplinary Mathematicscs
but.resultpráce byla úspěšně obhájenacs
dc.contributor.advisorTomášek, Petren
dc.contributor.authorGarg, Muskaanen
dc.contributor.refereeKisela, Tomášen
dc.date.created2025cs
dc.description.abstractThis thesis presents a comprehensive study of the stability properties of discretetime dynamical systems, with a primary focus on linear difference equations (LDEs) with constant coefficients. After introducing firstorder stability concepts, we extend the analysis to higherorder LDEs via the Schur–Cohn criterion, deriving regions of asymptotic stability in the complex parameter plane. Two illustrative higherorder examples are examined: MATLAB codes perform a bruteforce parameter sweep to map stability regions, while the root locus technique delineates their exact boundaries. Crossvalidation of these methods confirms the accuracy of the computed stability domains. A brief exploration of nonlinear difference equations and nonautonomous linear systems, characterizing their stability under timevarying coefficients through Lyapunov theory. Future work may extend these methods to stochastic or realtime control settings, and to nonlinear or distributedparameter systems.en
dc.description.abstractThis thesis presents a comprehensive study of the stability properties of discretetime dynamical systems, with a primary focus on linear difference equations (LDEs) with constant coefficients. After introducing firstorder stability concepts, we extend the analysis to higherorder LDEs via the Schur–Cohn criterion, deriving regions of asymptotic stability in the complex parameter plane. Two illustrative higherorder examples are examined: MATLAB codes perform a bruteforce parameter sweep to map stability regions, while the root locus technique delineates their exact boundaries. Crossvalidation of these methods confirms the accuracy of the computed stability domains. A brief exploration of nonlinear difference equations and nonautonomous linear systems, characterizing their stability under timevarying coefficients through Lyapunov theory. Future work may extend these methods to stochastic or realtime control settings, and to nonlinear or distributedparameter systems.cs
dc.description.markCcs
dc.identifier.citationGARG, M. Analýza stability diskrétních dynamických systémů [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2025.cs
dc.identifier.other165860cs
dc.identifier.urihttp://hdl.handle.net/11012/254224
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectdiscretetime dynamical systemsen
dc.subjectlinear difference equationsen
dc.subjectSchur–Cohn criterionen
dc.subjectstability regionsen
dc.subjectroot locusen
dc.subjectparametric uncertainty.en
dc.subjectdiscretetime dynamical systemscs
dc.subjectlinear difference equationscs
dc.subjectSchur–Cohn criterioncs
dc.subjectstability regionscs
dc.subjectroot locuscs
dc.subjectparametric uncertainty.cs
dc.titleAnalýza stability diskrétních dynamických systémůen
dc.title.alternativeStability analysis of discrete dynamical systemscs
dc.typeTextcs
dc.type.drivermasterThesisen
dc.type.evskpdiplomová prácecs
dcterms.dateAccepted2025-06-18cs
dcterms.modified2025-06-20-12:24:33cs
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
sync.item.dbid165860en
sync.item.dbtypeZPen
sync.item.insts2025.08.27 02:58:08en
sync.item.modts2025.08.26 20:20:12en
thesis.disciplinebez specializacecs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav matematikycs
thesis.levelInženýrskýcs
thesis.nameIng.cs

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
final-thesis.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Description:
file final-thesis.pdf
Loading...
Thumbnail Image
Name:
appendix-1.zip
Size:
2.37 KB
Format:
Unknown data format
Description:
file appendix-1.zip
Loading...
Thumbnail Image
Name:
review_165860.html
Size:
9.92 KB
Format:
Hypertext Markup Language
Description:
file review_165860.html

Collections