Enhanced Recognition of Naval Ship HRRP Targets Using Improved Adaptive Threshold Wavelet Denoising

Loading...
Thumbnail Image

Advisor

Referee

Mark

Journal Title

Journal ISSN

Volume Title

Publisher

Radioengineering Society

ORCID

Altmetrics

Abstract

To address the challenges of noise interference and low signal-to-noise ratio (SNR) in measured one-dimensional ship range profile data, which significantly affect target recognition, a new method is proposed. An improved adaptive threshold wavelet denoising (IATWD) method is introduced. Initially, the two critical parameters of wavelet denoising (WD)—namely, the threshold and threshold functions (TFs)—are optimized. For threshold optimization, a formula related to the number of decomposition levels, the noise standard deviations per level, and the signal length is developed. As decomposition levels change, an optimal threshold can be adaptively determined for each level. Regarding threshold function (TF) improvement, an enhanced TF is designed that flexibly adjusts based on the benefits of both soft and hard TFs. Subsequently, by analyzing the interactions between the variable factors, wavelet base functions, and decomposition levels, optimal parameters for this denoising method are selected. Finally, the efficacy of the denoising and its impact on recognition were validated using denoising evaluation metrics and a Support Vector Machine (SVM) for both simulated and empirical data. Experimental results with both data types demonstrate that the IATWD method significantly outperforms both traditional WD and comparative improved methods in terms of denoising effectiveness and recognition rates.

Description

Citation

Radioengineering. 2026 vol. 35, iss. 1, p. 41-55. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2026/26_01_0041_0055.pdf

Document type

Peer-reviewed

Document version

Published version

Date of access to the full text

Language of document

en

Study field

Comittee

Date of acceptance

Defence

Result of defence

Collections

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as Creative Commons Attribution 4.0 International license
Citace PRO