SVM Algorithm Training for DDoS on SDN Networks
but.event.date | 26.04.2022 | cs |
but.event.title | STUDENT EEICT 2022 | cs |
dc.contributor.author | Murtadha | |
dc.contributor.author | Shujairiand | |
dc.contributor.author | Škorpil, Vladislav | |
dc.date.accessioned | 2023-04-25T10:17:05Z | |
dc.date.available | 2023-04-25T10:17:05Z | |
dc.date.issued | 2022 | cs |
dc.description.abstract | Despite the flexibility provided by SDN technology is also vulnerable to attacks such as DDoS attacks, Network DDoS attack is a serious threat to the Internet today because internet traffic is increasing day by day, it is difficult to distinguish between legitimate and malicious traffic. To alleviate the DDoS attack in the campus network, to mitigate this attack, propose in this paper to classify benign traffic from DDoS attack traffic by SVM of the classification algorithms based on machine learning. As the contribution of this paper is to train the SVM algorithmwhich has been used in the approach for the training process. Due to the complexity of the dataset, using a type of kernel called a polynomial kernel to accomplish non-linearity discriminative. The results showed that the traffic classification was with the highest accuracy 96 %. | en |
dc.format | text | cs |
dc.format.extent | 475-479 | cs |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 475-479. ISBN 978-80-214-6029-4 | cs |
dc.identifier.isbn | 978-80-214-6029-4 | |
dc.identifier.uri | http://hdl.handle.net/11012/209282 | |
dc.language.iso | en | cs |
dc.publisher | Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.relation.ispartof | Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers | en |
dc.relation.uri | https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni | cs |
dc.rights | © Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií | cs |
dc.rights.access | openAccess | en |
dc.subject | SDN | en |
dc.subject | ML | en |
dc.subject | SVM | en |
dc.subject | RYU | en |
dc.subject | DdoS | en |
dc.title | SVM Algorithm Training for DDoS on SDN Networks | en |
dc.type.driver | conferenceObject | en |
dc.type.status | Peer-reviewed | en |
dc.type.version | publishedVersion | en |
eprints.affiliatedInstitution.department | Fakulta elektrotechniky a komunikačních technologií | cs |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- eeict-general-475-479.pdf
- Size:
- 740.67 KB
- Format:
- Adobe Portable Document Format
- Description: