SVM Algorithm Training for DDoS on SDN Networks

but.event.date26.04.2022cs
but.event.titleSTUDENT EEICT 2022cs
dc.contributor.authorMurtadha
dc.contributor.authorShujairiand
dc.contributor.authorŠkorpil, Vladislav
dc.date.accessioned2023-04-25T10:17:05Z
dc.date.available2023-04-25T10:17:05Z
dc.date.issued2022cs
dc.description.abstractDespite the flexibility provided by SDN technology is also vulnerable to attacks such as DDoS attacks, Network DDoS attack is a serious threat to the Internet today because internet traffic is increasing day by day, it is difficult to distinguish between legitimate and malicious traffic. To alleviate the DDoS attack in the campus network, to mitigate this attack, propose in this paper to classify benign traffic from DDoS attack traffic by SVM of the classification algorithms based on machine learning. As the contribution of this paper is to train the SVM algorithmwhich has been used in the approach for the training process. Due to the complexity of the dataset, using a type of kernel called a polynomial kernel to accomplish non-linearity discriminative. The results showed that the traffic classification was with the highest accuracy 96 %.en
dc.formattextcs
dc.format.extent475-479cs
dc.format.mimetypeapplication/pdfen
dc.identifier.citationProceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 475-479. ISBN 978-80-214-6029-4cs
dc.identifier.isbn978-80-214-6029-4
dc.identifier.urihttp://hdl.handle.net/11012/209282
dc.language.isoencs
dc.publisherVysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.relation.ispartofProceedings I of the 28st Conference STUDENT EEICT 2022: General papersen
dc.relation.urihttps://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazenics
dc.rights© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologiícs
dc.rights.accessopenAccessen
dc.subjectSDNen
dc.subjectMLen
dc.subjectSVMen
dc.subjectRYUen
dc.subjectDdoSen
dc.titleSVM Algorithm Training for DDoS on SDN Networksen
dc.type.driverconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
eprints.affiliatedInstitution.departmentFakulta elektrotechniky a komunikačních technologiícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
eeict-general-475-479.pdf
Size:
740.67 KB
Format:
Adobe Portable Document Format
Description: