SVM Algorithm Training for DDoS on SDN Networks
Loading...
Date
2022
Authors
Murtadha
Shujairiand
Škorpil, Vladislav
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract
Despite the flexibility provided by SDN technology is also vulnerable to attacks such as DDoS attacks, Network DDoS attack is a serious threat to the Internet today because internet traffic is increasing day by day, it is difficult to distinguish between legitimate and malicious traffic. To alleviate the DDoS attack in the campus network, to mitigate this attack, propose in this paper to classify benign traffic from DDoS attack traffic by SVM of the classification algorithms based on machine learning. As the contribution of this paper is to train the SVM algorithmwhich has been used in the approach for the training process. Due to the complexity of the dataset, using a type of kernel called a polynomial kernel to accomplish non-linearity discriminative. The results showed that the traffic classification was with the highest accuracy 96 %.
Description
Citation
Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers. s. 475-479. ISBN 978-80-214-6029-4
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
https://conf.feec.vutbr.cz/eeict/index/pages/view/ke_stazeni
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
© Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií