Performance Enhancement of Wi-Fi Fingerprinting-Based IPS by Accurate Parameter Estimation of Censored and Dropped Data

Loading...
Thumbnail Image
Date
2019-12
Authors
Trung Kien Vu
Manh Kha Hoang
Hung Lan Le
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
Společnost pro radioelektronické inženýrství
Altmetrics
Abstract
In complex indoor environments, the censoring, dropping, and multi-component problems may present in the observable data. This is due to the attenuation of signals, the unexpected operation of equipments, and the changing surrounding environment. Censoring refers to the fact that sensors on portable devices are unable to measure Received Signal Strength Index (RSSI) values below a certain threshold, for example, −100 dBm with typical smart phones. Dropping means that, occasionally, RSSI measurements of Wifi access points are not available, although their value is clearly above the censoring threshold. The multi-component problem occurs when the measured data varies due to obstacles as well as user directions; doors closed or open; and so forth. Taking these problems into consideration, this paper proposes a novel approach to enhance the performance of the Wifi Fingerprinting based Indoor Positioning System (WF-IPS). The proposed method is verified through simulated data and real field data. The experimental results show that our proposal outperforms the other state-of-the-art WF-IPS approach both in positioning accuracy and computational cost.
Description
Citation
Radioengineering. 2019 vol. 28, č. 4, s. 740-748. ISSN 1210-2512
https://www.radioeng.cz/fulltexts/2019/19_04_0740_0748.pdf
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International license
http://creativecommons.org/licenses/by/4.0/
Collections
Citace PRO